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ABSTRACT 
This report advocates the need for infrastructure planning to adapt to and further promote 

the deployment of autonomous vehicle (AV) technology. It is envisioned that in the future 
government agencies will dedicate certain lanes and areas of road networks to AVs only to 
facilitate the formulation of vehicle platoons to improve throughput and hopefully improve the 
performance of the whole network.  

This report consists of two applications, AV lanes and AV zones. A mathematical 
approach is first developed to optimize a time-dependent deployment plan of AV lanes on a 
transportation network with heterogeneous traffic stream consisting of both conventional 
vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. The 
deployment plan indicates when, where, and how many AV lanes to be located. The report also 
presents a mathematical framework for the optimal design of AV zones in a general network. 
With the presence of AV zones, AVs may apply different routing principles outside of and 
within the AV zones. A novel network equilibrium model is thus firstly proposed to capture such 
mixed-routing behaviors. A mixed-integer bi-level programming model is then formulated to 
optimize the deployment plan of AV zones. Numerical examples are presented to demonstrate 
the performance of the proposed models. 

 

Keywords: autonomous vehicle; autonomous-vehicle lane; autonomous-vehicle zone; mixed 
routing equilibrium; market penetration; deployment plan 
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EXECUTIVE SUMMARY 
 

The objectives of this project are to (a) develop a mathematical approach to optimize a 
time-dependent deployment plan of autonomous vehicle (AV) lanes, and (b) present a 
mathematical framework for the optimal design of AV zones in a general network. 

• For the first objective, Section 2.1 presents a multi-class network equilibrium model to 
describe the flow distributions of both conventional vehicles (CVs) and AVs, given the 
presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel 
cost) derived from the deployment of AV lanes will further promote the AV adoption, 
Section 2.2 applies a diffusion model to forecast the evolution of AV market penetration. 
With the proposed equilibrium model and diffusion model, a time-dependent deployment 
model is then formulated in Section 2.3, which can be solved by an efficient solution 
algorithm.  

• For the second objective, Section 3.1 illustrates the operational concept of AV zones and 
basic assumptions for the proposed models. Section 3.2 formulates the network 
equilibrium model and proposes its solution algorithm. Lastly, Section 3.3 optimizes the 
design of AV zones. 
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CHAPTER 1   BACKGROUND 
Autonomous vehicles (AVs) are expected to offer extraordinary improvements to both 

the safety and efficiency of existing roadways and mobility systems. Although it will be many 
years before a widespread adoption of AV technology, recent developments suggest that they are 
fast-approaching. Google’s AVs had driven more than 2,000,000 miles on public roads by June 
2016 (Google Self-Driving Car Project, 2016). More recently, nuTonomy, a software company, 
has launched the world’s first self-driving taxi in Singapore (nuTonomy, 2016). Many car 
manufactures, such as Volvo and Audi, are currently designing and testing their prototype AVs. 
In the United States, states such as Nevada, Florida, California, Michigan, and Washington D.C. 
have legalized AVs for testing on public roads. While thus far the development of AV 
technology appears to be primarily driven by the private sector, it is critical for government 
agencies to change various policies and practices to adapt to and further promote the deployment 
of the technology.  

In this project, we advocate the need for infrastructure adaptation planning for AVs. 
Before manual driving can be completely phased out (or criminalized, as some have predicted), 
the traffic stream on a road network will still be heterogeneous, with both conventional vehicles 
(CVs) and AVs. We envision that government agencies can initially identify critical locations to 
implement various AV mobility applications. For example, a “bottleneck manager” can be 
implemented at a recurrent freeway bottleneck. When approaching, AVs send requests via 
vehicle-to-infrastructure wireless commutations to the “bottleneck manager,” which will 
prioritize the requests and optimize their trajectories to ensure timely passage while preventing 
the bottleneck from being activated. To leverage the growing adoption of AVs, government 
agencies may later dedicate certain traffic lanes, highway segments or even areas of networks 
exclusively to AVs to facilitate the formulation of vehicle platoons to further improve 
throughput. Subsequently implemented are innovative control strategies that aim to achieve 
system optimum in those areas. The dedicated AV areas will expand gradually as the level of the 
market penetration of AVs increases and eventually support a fully connected and automated 
mobility in the whole system. Similar ideas have been suggested in the literature. For example, 
as current managed lanes are equipped with advanced communication and data transfer systems, 
researchers have suggested converting some of them into dedicated lanes for AVs to reduce 
congestion and improve the safety of passengers (Davis, 2014; Levin and Boyles, 2016a,b). To 
help boost the market penetration of AVs, Chen et al. (2016) proposed a time-dependent model 
to optimally deploy AV lanes on a general network consisting of both CVs and AVs. Godsmark 
and Kakkar (2014) pointed out that the presence of AV areas can maximize benefits brought by 
AVs as rapidly as possible, as well as promote the AV adoption. 

This project first attempts to propose a general mathematical model to help government 
agencies optimally deploy AV lanes in a way to minimize the social cost. The decision-making 
process in such a planning practice possesses a structure of the leader-follower or Stackelberg 
game, in which government agencies serve as the leader and travelers are the follower. In order 
for government agencies to optimize those planning decisions, travelers’ spontaneous responses 
need to be proactively considered in the optimization framework. This type of Stackelberg games 
have been formulated as mathematical programs with equilibrium constraints for many 
transportation applications (see, e.g., Wu et al., 2011, 2012; Yin et al., 2008; He et al., 2013a, 
2015; Zhang et al., 2014; Chen et al., 2016). More specifically, given AV lanes deployed, we 
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assume that CVs and AVs follow the Wardrop equilibrium principle to choose their routes that 
minimize their individual travel costs (Wardrop, 1952), and the resulting flow distribution is in a 
multi-class network equilibrium (e.g., Yang and Meng, 2001; Wu et al., 2006). Furthermore, 
since the net benefit (e.g., reduced travel cost for AVs) derived from deploying AV lanes plays 
an important role in promoting the AV adoption, we apply a diffusion model to forecast the 
evolution of AV market penetration. Based on the network equilibrium model and diffusion 
model, we proposed a time-dependent deployment model to optimize the location design of AV 
lanes on a general transportation network. The AV market penetration follows a progressive 
process instead of a radical one, thus the AV lanes should also be deployed in a progressive 
fashion. More specifically, the optimized deployment plan will not only specify where and how 
many AV lanes to be deployed, but also when to deploy them. 

In addition, this project deals with a particular issue in the infrastructure adaptation 
planning process and aims to present a mathematical framework for the optimal design of AV 
zones in a general network. With only AVs being allowed to enter, an AV zone consists of a set 
of links that are tailored to AVs. Note that in order not to compromise CVs’ accessibility to 
various locations, the nodes within the zone in particular, the AV zone can be designed to consist 
of only urban expressways or arterial roads, excluding minor streets. It is assumed that within the 
zone, AVs cannot choose their routes. Instead, they report their exits and are then guided by a 
central controller to achieve the system optimum flow distribution in the zone. AV zones will 
enable full utilization of the AV technology within the zones to hopefully improve the 
performance of the whole network. These zones can help reduce travel times for AVs and further 
nurture the AV market. However, the existence of AV zones likely increases travel times for 
some CVs. Therefore, government agencies will need to make a tradeoff between these pros and 
cons in designing AV zones. The optimal design will depend on the market penetration of AVs, 
network topology and link characteristics, and more importantly, the route choices of both CVs 
and AVs in the network.  

Similar to the deployment problem of AV lanes, optimal design of AV zones possesses a 
structure of leader-follower game, in which government agencies serve as the leader while CVs 
and AVs are the followers. Given a design of the AV zone, we firstly develop an innovative user 
equilibrium model we call the “mixed routing equilibrium model” to describe the flow 
distribution of AVs and CVs across the network. The novelty of the proposed model lies in the 
aspect that some paths consist of both links outside of and within the AV zones; AVs follow the 
user-optimum routing principle in the former and the system-optimum routing principle in the 
latter. This new equilibrium model is most relevant to mixed equilibrium models in the literature, 
e.g., Haurie and Marcotte (1985), Harker (1988), Yang and Zhang (2008), Zhang et al. (2008), 
and He et al. (2013b), where both the user-optimum and system-optimum route choice behaviors 
are considered. In all these previous models, all types of players share the same network, and 
each type of player applies a particular routing principle to traverse the whole network. In 
contrast, in our model, AVs and CVs may face different network topologies (recall that CVs are 
not allowed to enter AV zones) and, more importantly, AVs may apply different routing 
principles at different sub-networks. Mixed routing behaviors may become more relevant with 
the deployment of automated and connected vehicles. Capturing them in the network equilibrium 
framework is very challenging, which actually constitutes one of the major contributions of this 
project.  
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Given the proposed mixed routing equilibrium model, we proceed to optimize the 
deployment plan of AV zones over a general network. The design problem is formulated as a 
mixed-integer bi-level programing model that is very difficult to solve. The problem appears to 
have a similar structure as the cordon design problem for cordon congestion pricing (see, e.g., 
Zhang and Yang, 2004 and Sumalee, 2004), which was solved previously using genetic-
algorithm-based heuristics, such as the cutset-based approach (Zhang and Yang, 2004), the 
branch-tree approach (Sumalee, 2004), and the Delaunay triangulation approach (Hult, 2006). 
However, most of the above algorithms have low efficiency on generating new feasible design 
plans. In this report, we adopt a simulated annealing algorithm or SAA (Kirkpatrick et al., 1983; 
Cerny, 1985) to solve the AV zone design problem, since a simple but efficient plan-updating 
strategy can be tailored for SAA in order to generate new feasible design plans efficiently. 

For the remainder, Chapter 2 develops a mathematical approach to optimize a time-
dependent deployment plan of AV lanes on a transportation network with heterogeneous traffic 
stream consisting of both conventional vehicles CVs and AVs, so as to minimize the social cost 
and promote the adoption of AVs. Chapter 3 presents a mathematical framework for the optimal 
design of AV zones in a general network. Concluding remarks are provided in Chapter 4. 

CHAPTER 2   OPTIMAL DEPLOYMENT OF AUTONOMOUS VEHICLE 
LANES WITH ENDOGENOUS MARKET PENETRATION 

In this chapter, Section 2.1 applies the multi-class network equilibrium model to describe 
the flow distributions of both CVs and AVs. Section 2.2 proposes the AV diffusion model to 
forecast the market penetration of AVs. Section 2.3 presents the mathematical program to 
optimize the AV-lane deployment plan, followed by numerical examples in Section 2.4.  

Below are some notations used throughout the chapter. 
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Sets 
𝐾𝐾 Set of paired links 
𝑁𝑁 Set of nodes 
𝐴𝐴 Set of links 
𝐴̂𝐴 Set of AV links 
𝑀𝑀 Set of travel modes: mode 1 denotes CVs, and mode 2 denotes AVs 
𝑊𝑊 Set of origin-destination (OD) pairs 

𝑃𝑃𝜏𝜏
𝑤𝑤,𝑚𝑚 Set of paths for travel mode 𝑚𝑚 ∈ 𝑀𝑀 between OD pair 𝑤𝑤 ∈ 𝑊𝑊 at year 𝜏𝜏 ∈

𝛵𝛵 

𝑃𝑃�𝜏𝜏
𝑤𝑤,𝑚𝑚 

Set of utilized paths for travel mode 𝑚𝑚 ∈ 𝑀𝑀 between OD pair 𝑤𝑤 ∈ 𝑊𝑊 at 
year 𝜏𝜏 ∈ 𝛵𝛵 

𝛵𝛵 Set of years 
Parameters 
𝑚𝑚 Index of travel mode, 𝑚𝑚 ∈ 𝑀𝑀 
𝑤𝑤 Index of OD pair, 𝑤𝑤 ∈ 𝑊𝑊 
𝑝𝑝 Index of path, 𝑝𝑝 ∈ 𝑃𝑃𝜏𝜏

𝑤𝑤,𝑚𝑚 
𝑑𝑑𝑤𝑤∗ Potential AV market size for OD pair 𝑤𝑤 ∈ 𝑊𝑊 
𝛾𝛾𝑚𝑚 Value of time (VOT) for drivers of travel mode 𝑚𝑚 ∈ 𝑀𝑀 
𝜎𝜎 Interest rate 
𝑛𝑛 A factor converting social cost from an hourly basis to a yearly basis 
𝜏𝜏 Index of year 𝜏𝜏 ∈ 𝛵𝛵 
𝜍𝜍 Unsafety factor for using CV 

𝜃𝜃𝑎𝑎𝑘𝑘 
If link 𝑎𝑎 belongs to the 𝑘𝑘th link pair, and it is an AV link, then 𝜃𝜃𝑎𝑎𝑘𝑘 = 1; If 
link 𝑎𝑎 belongs to the 𝑘𝑘th link pair, and it is not an AV link, then 𝜃𝜃𝑎𝑎𝑘𝑘 =
−1; otherwise, 𝜃𝜃𝑎𝑎𝑘𝑘 = 0 

Variables 
𝑑𝑑𝜏𝜏
𝑤𝑤,𝑚𝑚 Demand of travel mode 𝑚𝑚 ∈ 𝑀𝑀 between OD pair 𝑤𝑤 ∈ 𝑊𝑊 at year 𝜏𝜏 ∈ 𝛵𝛵 

𝑥𝑥𝑎𝑎,𝜏𝜏
𝑤𝑤,𝑚𝑚 Flow of travel mode 𝑚𝑚 ∈ 𝑀𝑀 on link 𝑎𝑎 ∈ 𝐴𝐴 between OD pair 𝑤𝑤 ∈ 𝑊𝑊 at 

year 𝜏𝜏 ∈ 𝛵𝛵 
𝑣𝑣𝑎𝑎,𝜏𝜏 Aggregate flow on link 𝑎𝑎 ∈ 𝐴𝐴 at year 𝜏𝜏 ∈ 𝛵𝛵 

𝑦𝑦𝜏𝜏𝑘𝑘 The number of lanes on the 𝑘𝑘th link pair that are converted into AV lanes 
at year 𝜏𝜏 ∈ 𝛵𝛵 

𝐶𝐶𝜏𝜏
𝑤𝑤,𝑚𝑚 Equilibrium travel time for mode 𝑚𝑚 ∈ 𝑀𝑀 between OD pair 𝑤𝑤 ∈ 𝑊𝑊 at 

year 𝜏𝜏 ∈ 𝛵𝛵 
 

2.1 MULTI-CLASS NETWORK EQUILIBRIUM MODEL 

Assume that the entire planning horizon is divided into |𝛵𝛵|  years. Let 𝐺𝐺(𝑁𝑁,𝐴𝐴) denote a 
general transportation network, where 𝑁𝑁 and 𝐴𝐴 are the sets of nodes and links in the network 
respectively. Let 𝐴̂𝐴 represent the set of AV links in the network. Note that any link including AV 
lanes can be divided into one regular link and one AV link without affecting the network 
performance. For example, Figure 2-1(a) shows a simple network topology. If we consider link 1 
and link 4 as the candidate links where AV lanes can be deployed, then its network topology can 
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be revised as the one in Figure 2-1(b). That is, 𝐴𝐴 = {1,2,3,4,5,6,7} and 𝐴̂𝐴 = {6,7}. We further 
define 𝐾𝐾 as the set of these pairs of links. Specifically, in Figure 2-1(b), 𝐾𝐾 = {(1,6), (4,7)}. We 
represent a link either as 𝑎𝑎 ∈ 𝐴𝐴 or its starting and ending nodes, i.e., 𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴. Let 𝑀𝑀 =
{1,2} denote the set of travel modes, in which mode 1 corresponds to CV and mode 2 
corresponds to AV. The set of OD pairs is denoted as 𝑊𝑊, and 𝑜𝑜(𝑤𝑤) and 𝑑𝑑(𝑤𝑤) define the origin 
and destination of OD pair 𝑤𝑤 ∈ 𝑊𝑊. The travel time of link 𝑎𝑎 ∈ 𝐴𝐴 at year 𝜏𝜏 ∈ 𝛤𝛤 is denoted as 
𝑡𝑡𝑎𝑎,𝜏𝜏�𝑣𝑣𝑎𝑎,𝜏𝜏�, which is specified by the link performance function, e.g., in a form of the following 
function: 

𝑡𝑡𝑎𝑎,𝜏𝜏�𝑣𝑣𝑎𝑎,𝜏𝜏� = 𝑡𝑡𝑎𝑎0 �1 + 𝛼𝛼�𝑎𝑎 �
𝑣𝑣𝑎𝑎,𝜏𝜏

Λ𝑎𝑎τ
�
𝛽𝛽�𝑎𝑎
� 

where 𝑡𝑡𝑎𝑎0 is the free-flow travel time of link 𝑎𝑎; Λ𝑎𝑎τ  is the capacity of link 𝑎𝑎 at year 𝜏𝜏 ∈ 𝛵𝛵; 𝑣𝑣𝑎𝑎,𝜏𝜏 is 
the link flow at year 𝜏𝜏 ∈ 𝛵𝛵, and 𝛼𝛼�𝑎𝑎 and 𝛽̅𝛽𝑎𝑎 are two positive parameters.      
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(a) Original network topology 
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(b) Revised network topology 

Figure 2-1. A simple network example  

 

The flow distributions of both CVs and AVs at any year 𝜏𝜏 ∈ 𝛵𝛵, can be described by the 
following network equilibrium model: 

𝚫𝚫𝒙𝒙𝜏𝜏
𝑤𝑤,𝑚𝑚 = 𝑬𝑬𝑤𝑤,𝑚𝑚𝑑𝑑𝜏𝜏

𝑤𝑤,𝑚𝑚 ∀𝑤𝑤 ∈ 𝑊𝑊,𝑚𝑚 ∈ 𝑀𝑀 (2-1) 
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𝑥𝑥𝑎𝑎,𝜏𝜏
𝑤𝑤,2 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊 (2-2) 

𝑥𝑥𝑎𝑎,𝜏𝜏
𝑤𝑤,1 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴\𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (2-3) 

𝑥𝑥𝑎𝑎,𝜏𝜏
𝑤𝑤,1 = 0 ∀𝑎𝑎 ∈ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (2-4) 

𝑣𝑣𝑎𝑎,𝜏𝜏 = � � 𝑥𝑥𝑎𝑎,𝜏𝜏
𝑤𝑤,𝑚𝑚

𝑤𝑤∈𝑊𝑊𝑚𝑚∈𝑀𝑀

 ∀𝑎𝑎 ∈ 𝐴𝐴 (2-5) 

𝑡𝑡𝑎𝑎,𝜏𝜏�𝑣𝑣𝑎𝑎,𝜏𝜏� + 𝜌𝜌𝑖𝑖,𝜏𝜏
𝑤𝑤,𝑚𝑚 − 𝜌𝜌𝑗𝑗,𝜏𝜏

𝑤𝑤,𝑚𝑚 − 𝜂𝜂𝑎𝑎,𝜏𝜏
𝑤𝑤,𝑚𝑚 = 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊,𝑚𝑚 ∈ 𝑀𝑀 (2-6) 

𝜂𝜂𝑎𝑎,𝜏𝜏
𝑤𝑤,2 ⋅ 𝑥𝑥𝑎𝑎,𝜏𝜏

𝑤𝑤,2 = 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊 (2-7) 

𝜂𝜂𝑎𝑎,𝜏𝜏
𝑤𝑤,1 ⋅ 𝑥𝑥𝑎𝑎,𝜏𝜏

𝑤𝑤,1 = 0 ∀𝑎𝑎 ∈ 𝐴𝐴\𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (2-8) 

𝜂𝜂𝑎𝑎,𝜏𝜏
𝑤𝑤,2 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊 (2-9) 

𝜂𝜂𝑎𝑎,𝜏𝜏
𝑤𝑤,1 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴\𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (2-10) 

where 𝚫𝚫 is the node-link incidence matrix associated with a given network, and 𝑬𝑬𝑤𝑤,𝑚𝑚,𝑤𝑤 ∈
𝑊𝑊,𝑚𝑚 ∈ 𝑀𝑀 is a vector with a length of |𝑁𝑁|. The vector consists of two non-zero components: one 
has a value of 1 corresponding to origin 𝑜𝑜(𝑤𝑤) and the other has a value of −1 corresponding to 
destination 𝑠𝑠(𝑤𝑤). 𝑥𝑥𝑎𝑎,𝜏𝜏

𝑤𝑤,𝑚𝑚 is the link flow of mode 𝑚𝑚 ∈ 𝑀𝑀 between O-D pair 𝑤𝑤 ∈ 𝑊𝑊 at year 𝜏𝜏 ∈ 𝛵𝛵, 
and 𝑣𝑣𝑎𝑎,𝜏𝜏 is the aggregation of 𝑥𝑥𝑎𝑎,𝜏𝜏

𝑤𝑤,𝑚𝑚 over all travel modes and OD pairs. Vectors 𝝆𝝆 and 𝜼𝜼 are 
auxiliary variables, and 𝝆𝝆 represents the node potentials. 

In the above, constraint (2-1) ensures the flow conservation; constraints (2-2) and (2-3) 
are nonnegative constraints on link flows; constraint (2-4) ensures that only AVs can use AV 
links; constraint (2-5) aggregates link flows across all travel modes and OD pairs; constraints (2-
6)-(2-10) ensure that all utilized paths of the same travel mode between each OD pair share the 
same travel cost  𝜌𝜌𝑠𝑠(𝑤𝑤),𝜏𝜏

𝑤𝑤,𝑚𝑚 − 𝜌𝜌𝑜𝑜(𝑤𝑤),𝜏𝜏
𝑤𝑤,𝑚𝑚 , while those unutilized ones possess travel cost larger than or 

equal to 𝜌𝜌𝑠𝑠(𝑤𝑤),𝜏𝜏
𝑤𝑤,𝑚𝑚 − 𝜌𝜌𝑜𝑜(𝑤𝑤),𝜏𝜏

𝑤𝑤,𝑚𝑚 .  

In addition, finding a solution to the system of equilibrium conditions is equivalent to 
solving the following mathematical problem (NE): 

NE: 

min
𝐱𝐱
�� 𝑡𝑡𝑎𝑎,𝜏𝜏(𝑥𝑥)𝑑𝑑𝑑𝑑

𝑣𝑣𝑎𝑎,𝜏𝜏

0𝑎𝑎∈𝐴𝐴

 

s.t. (2-1)-(2-5) 

The equivalence can be established by comparing the KKT conditions of NE with the 
defined network equilibrium conditions (2-1)-(2-10). 

2.2 AV DIFFUSION MODEL 

Diffusion models have been widely applied to forecast how a new product or idea will be 
adopted over time. For example, Yang and Meng (2001) proposed a modified logistic growth 
model to investigate the adoption rate of advanced traveler information systems. Park et al. 
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(2011) proposed a diffusion model to simulate the market penetration of hydrogen fuel cell 
vehicles. Lavasani et al. (2016) developed a market penetration model to forecast the AV 
technology adoption by considering the price difference between AV and CV, as well as the 
economic wealth of the population. We here adopt the diffusion model proposed by Yang and 
Meng (2001). Specifically, the adoption of AVs at a given year depends on the adoption and the 
net benefit gained at the previous year. That is, 

𝑑𝑑𝜏𝜏+1
𝑤𝑤,2 = 𝑑𝑑𝜏𝜏

𝑤𝑤,2 + g(𝜙𝜙𝜏𝜏𝑤𝑤)𝑑𝑑𝜏𝜏
𝑤𝑤,2 �1 −

𝑑𝑑𝜏𝜏
𝑤𝑤,2

𝑑𝑑𝑤𝑤∗ �
 ∀𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝛵𝛵\{|𝛵𝛵|} (2-11) 

where 𝑑𝑑𝑤𝑤∗ is the potential AV market size for OD pair 𝑤𝑤 ∈ 𝑊𝑊. Note that, the potential market 
size of a new product is predicted exogenously in many diffusion models (e.g., Lavasani et al., 
2016; Park et al, 2011; Massiani and Gohs, 2015), with a few exception (Yang and Meng, 2001; 
Huang and Li, 2007). The latter ones relate the potential market penetration level to the benefit 
brought by the new product. Doing so, however, will complicate the AV-lane deployment model 
(proposed in Section 4), and even make it intractable. Therefore, in this chapter, we adopt a fixed 
potential AV market size for each OD pair. g(𝜙𝜙𝜏𝜏𝑤𝑤) is the intrinsic variable growth coefficient for 
OD pair 𝑤𝑤 ∈ 𝑊𝑊, which is defined as follows: 

g(𝜙𝜙𝜏𝜏𝑤𝑤) = 𝑎𝑎�𝑒𝑒𝑏𝑏��𝜙𝜙𝜏𝜏𝑤𝑤−𝜙𝜙�𝑤𝑤� ∀𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝛵𝛵 (2-12) 

where 𝑎𝑎� and 𝑏𝑏� are two parameters (𝑎𝑎� > 0; 𝑏𝑏� ≥ 0), 𝜙𝜙�𝑤𝑤 is the OD specific benefit threshold for 
OD pair 𝑤𝑤 ∈ 𝑊𝑊, and 𝜙𝜙𝜏𝜏𝑤𝑤 is the net benefit gained for OD pair 𝑤𝑤 ∈ 𝑊𝑊 at year 𝜏𝜏 ∈ 𝛵𝛵. 𝜙𝜙𝜏𝜏𝑤𝑤 is 
defined as follows: 

𝜙𝜙𝜏𝜏𝑤𝑤 = �(𝛾𝛾1 + 𝜍𝜍)𝐶𝐶𝜏𝜏
𝑤𝑤,1 − 𝛾𝛾2𝐶𝐶𝜏𝜏

𝑤𝑤,2� ⋅ 𝐿𝐿𝜏𝜏𝑤𝑤 − 𝑌𝑌𝜏𝜏 ∀𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝛵𝛵 (2-13) 

where 𝛾𝛾𝑚𝑚 is the value of travel time for travel mode 𝑚𝑚, 𝜍𝜍 is a nonnegative unsafety factor for 
using CVs compared with using AVs, 𝐿𝐿𝜏𝜏𝑤𝑤 is the number of trips between OD pair 𝑤𝑤 ∈ 𝑊𝑊 at year 
𝜏𝜏 ∈ 𝛵𝛵, which could be the average annual trip number obtained from household travel survey, 𝑌𝑌𝜏𝜏 
is the additional annual cost for using AVs at year 𝜏𝜏 ∈ 𝛵𝛵, and 𝐶𝐶𝜏𝜏

𝑤𝑤,𝑚𝑚 is the equilibrium travel time 
of mode 𝑚𝑚 ∈ 𝑀𝑀 between OD pair 𝑤𝑤 ∈ 𝑊𝑊 at year 𝜏𝜏 ∈ 𝛵𝛵, i.e., 

𝐶𝐶𝜏𝜏
𝑤𝑤,𝑚𝑚 = 𝜌𝜌𝑠𝑠(𝑤𝑤),𝜏𝜏

𝑤𝑤,𝑚𝑚 − 𝜌𝜌𝑜𝑜(𝑤𝑤),𝜏𝜏
𝑤𝑤,𝑚𝑚  ∀𝑚𝑚 ∈ 𝑀𝑀,𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝛵𝛵 (2-14) 

where 𝝆𝝆 can be obtained by solving NE.  

Without loss of generality, we assume that the yearly travel demand between each OD 
pair remains the same during the entire planning horizon. That is, 

� 𝑑𝑑𝜏𝜏
𝑤𝑤,𝑚𝑚

𝑚𝑚∈𝑀𝑀

= � 𝑑𝑑0
𝑤𝑤,𝑚𝑚

𝑚𝑚∈𝑀𝑀

 ∀𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ 𝛵𝛵 (2-15) 
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2.3 AV-LANE LOCATION PROBLEM 

In this section, we will investigate how to optimally locate AV lanes to minimize the 
social cost with the consideration of the market penetration of AVs. AV lanes can only be 
located to a given set of candidate links, to reflect possible restrictions imposed in field 
applications. The optimal deployment problem of AV lanes will be formulated as a bi-level 
model. The lower-level problem is the multi-class network equilibrium defined in Eqs. (2-1)-(2-
10), while the upper-level one investigates when, where and how many AV lanes should be 
deployed.  

2.3.1 Model Formulation 
Let 𝜃𝜃𝑎𝑎𝑘𝑘 denote the pair-link incidence. If link 𝑎𝑎 belongs to the 𝑘𝑘th pair of links, and it is 

an AV link, then 𝜃𝜃𝑎𝑎𝑘𝑘 = 1; if it is a regular link, then 𝜃𝜃𝑎𝑎𝑘𝑘 = −1; otherwise, 𝜃𝜃𝑎𝑎𝑘𝑘 = 0. Further, let 𝑦𝑦𝜏𝜏𝑘𝑘 
be an integer variable, representing the number of lanes on the 𝑘𝑘th pair of links that are 
converted from regular lanes to AV lanes at year 𝜏𝜏. Then, the AV-lane location problem (AVLL) 
can be formulated as follows: 

AVLL: 

min
𝒙𝒙,𝒅𝒅,𝜼𝜼,𝝆𝝆,𝒚𝒚 

� � �� 𝑛𝑛
�(𝛾𝛾1 + 𝜍𝜍)𝑑𝑑𝜏𝜏

𝑤𝑤,1𝐶𝐶𝜏𝜏
𝑤𝑤,1 + 𝛾𝛾2𝑑𝑑𝜏𝜏

𝑤𝑤,2𝐶𝐶𝜏𝜏
𝑤𝑤,2�

(1 + 𝜎𝜎)𝜏𝜏−1
𝑚𝑚∈𝑀𝑀

�
𝑤𝑤∈𝑊𝑊𝜏𝜏∈𝛵𝛵

 

                      s.t. (2-1)-(2-15)   

Λ𝑎𝑎𝜏𝜏 = Λ�𝑎𝑎 + 𝑐𝑐𝑎̅𝑎 ⋅ � 𝜃𝜃𝑎𝑎,𝑘𝑘�𝑦𝑦𝑗𝑗𝑘𝑘
𝜏𝜏

𝑗𝑗=1𝑘𝑘∈𝐾𝐾

 ∀𝑎𝑎 ∈ 𝐴𝐴, 𝜏𝜏 ∈ 𝛵𝛵 (2-16) 

Λ�𝑎𝑎 + 𝑐𝑐𝑎̅𝑎 ⋅ � 𝜃𝜃𝑎𝑎,𝑘𝑘�𝑦𝑦𝑗𝑗𝑘𝑘
|𝛵𝛵|

𝑗𝑗=1𝑘𝑘∈𝐾𝐾

≥ 𝜇𝜇𝑎𝑎 ∀𝑎𝑎 ∈ 𝐴𝐴 (2-17) 

𝑦𝑦𝜏𝜏𝑘𝑘 ∈ {0,1, … , 𝐼𝐼𝑘𝑘} ∀𝑘𝑘 ∈ 𝐾𝐾, 𝜏𝜏 ∈ 𝛵𝛵 (2-18) 

where 𝜎𝜎 is the discount rate per year, 𝑛𝑛 is a factor converting social cost from an hourly basis to 
a yearly basis, 𝜇𝜇𝑎𝑎 is a given parameter, representing the minimum capacity required for link 𝑎𝑎, 𝐼𝐼𝑘𝑘 
is a given integer, representing the maximum number of AV lanes that can be deployed on the 
𝑘𝑘th pair of links each year, Λ�𝑎𝑎 is the initial capacity of link 𝑎𝑎, 𝑐𝑐𝑎̅𝑎 is the per-lane capacity of link 
𝑎𝑎, thus Λ�𝑎𝑎 + 𝑐𝑐𝑎̅𝑎 ⋅ ∑ 𝜃𝜃𝑎𝑎,𝑘𝑘 ∑ 𝑦𝑦𝑘𝑘,𝑗𝑗

𝜏𝜏
𝑗𝑗=1𝑘𝑘∈𝐾𝐾  represents the capacity of link 𝑎𝑎 at year 𝜏𝜏. It should be 

noted that the increase of AV-link capacity and the decrease of the paired regular-link capacity is 
not symmetric, as their per-lane capacities are not the same. As mentioned before, the per-lane 
capacity can become tripled when it is converted from a regular lane to an AV lane due to the 
benefits from vehicle-to-vehicle communication. 

In the above, the objective function is to minimize the total social cost, consisting of the 
costs of both CVs and AVs; constraint (2-16) calculates the capacity of link 𝑎𝑎 at year 𝜏𝜏; 
constraint (2-17) ensures that the capacity of link 𝑎𝑎 should be no less than a required minimum 
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capacity. For example, in order to maintain the accessibility of the network, there must be at least 
one regular lane for all the regular links, otherwise, CVs of some OD pairs cannot finish their 
trips. Constraint (2-18) implies that 𝑦𝑦𝜏𝜏𝑘𝑘 must be an integer number, and its upper bound is 𝐼𝐼𝑘𝑘. 

The above model can be readily extended to consider the construction cost for the AV-
lane deployment and the government subsidy, via adding a term ∑ 𝛱𝛱𝜏𝜏

(1+𝜎𝜎)𝜏𝜏−1𝜏𝜏 − ∑ 𝑆𝑆𝜏𝜏
(1+𝜎𝜎)𝜏𝜏−1𝜏𝜏  to the 

objective function, where 𝛱𝛱𝜏𝜏 and 𝑆𝑆𝜏𝜏 are the construction cost and the government subsidy at year 
𝜏𝜏 respectively. 

2.3.2 Solution Algorithm 
The AVLL problem can be generally categorized as a discrete network design problem 

(DNDP). And those solution algorithms proposed in the literature for DNDP can be employed to 
solve AVLL, e.g., branch-and-bound technique (LeBlanc, 1975), support-function based method 
(Gao et al., 2005), active-set algorithm (Zhang et al., 2009), system optimal-relaxation based 
method and user equilibrium-reduction based method (Wang et al., 2013).  Here, AVLL is in 
form of a mathematical program with complementarity constraints (see, e.g., Luo et al., 1996), 
we employ the active-set algorithm developed by Zhang et al. (2009) to solve it. The basic idea 
is to solve a sequence of restricted nonlinear problems to obtain a strongly stationary solution to 
the original AVLL. 

Let Φ𝑘𝑘 denote the smallest integer number such that 𝐼𝐼𝑘𝑘 ≤ 2Φ𝑘𝑘 − 1, then constraint (2-18) 
can be represented as 𝑦𝑦𝜏𝜏𝑘𝑘 = ∑ 𝑦𝑦𝜏𝜏

𝑘𝑘,𝜛𝜛Φ𝑘𝑘
𝜛𝜛=1 2𝜛𝜛−1, where 𝑦𝑦𝜏𝜏

𝑘𝑘,𝜛𝜛 is a binary variable for 𝜛𝜛 ∈ {1, … ,Φ𝑘𝑘}. 

For a particular deployment plan, we define |𝛵𝛵| pairs of active sets, Ω𝜏𝜏,0 =
�(𝑘𝑘,𝜛𝜛):𝑦𝑦𝜏𝜏

𝑘𝑘,𝜛𝜛 = 0� and Ω𝜏𝜏,1 = �(𝑘𝑘,𝜛𝜛):𝑦𝑦𝜏𝜏
𝑘𝑘,𝜛𝜛 = 1�,∀𝜏𝜏 ∈ 𝛵𝛵. These two sets should be “complete”, 

i.e., Ω𝜏𝜏,0 ∪ Ω𝜏𝜏,1 = {(𝑘𝑘,𝜛𝜛)}; Ω𝜏𝜏,0 ∩ Ω𝜏𝜏,1 = ∅,∀𝜏𝜏 ∈ 𝛵𝛵. Given some deployment plan 
∪𝜏𝜏∈Γ �Ω𝜏𝜏,0,Ω𝜏𝜏,1�, the restricted AVLL (RAVLL) problem can be formulated as below: 

RAVLL: 

min
𝒙𝒙,𝒅𝒅,𝜼𝜼,𝝆𝝆,𝒚𝒚 

� � �� 𝑛𝑛
�(𝛾𝛾1 + 𝜍𝜍)𝑑𝑑𝜏𝜏

𝑤𝑤,1𝐶𝐶𝜏𝜏
𝑤𝑤,1 + 𝛾𝛾2𝑑𝑑𝜏𝜏

𝑤𝑤,2𝐶𝐶𝜏𝜏
𝑤𝑤,2�

(1 + 𝜎𝜎)𝜏𝜏−1
𝑚𝑚∈𝑀𝑀

�
𝑤𝑤∈𝑊𝑊𝜏𝜏∈𝛵𝛵

 

                     s.t. (2-1)-(2-15)   

Λ𝑎𝑎𝜏𝜏 = Λ�𝑎𝑎 + 𝑐𝑐𝑎̅𝑎 ⋅ � 𝜃𝜃𝑎𝑎,𝑘𝑘��𝑦𝑦𝑗𝑗
𝑘𝑘,𝜛𝜛

 Φ𝑘𝑘

𝜛𝜛

𝜏𝜏

𝑗𝑗=1𝑘𝑘∈𝐾𝐾

 ∀𝑎𝑎 ∈ 𝐴𝐴, 𝜏𝜏 ∈ 𝛵𝛵 (2-19) 

Λ�𝑎𝑎 + 𝑐𝑐𝑎̅𝑎 ⋅ � 𝜃𝜃𝑎𝑎,𝑘𝑘��𝑦𝑦𝑗𝑗
𝑘𝑘,𝜛𝜛

 Φ𝑘𝑘

𝜛𝜛  

|𝛵𝛵|

𝑗𝑗=1𝑘𝑘∈𝐾𝐾

≥ 𝜇𝜇𝑎𝑎 ∀𝑎𝑎 ∈ 𝐴𝐴 (2-20) 

𝑦𝑦𝜏𝜏
𝑘𝑘,𝜛𝜛 = 0 ∀(𝑘𝑘,𝜛𝜛) ∈ Ω𝜏𝜏,0, 𝜏𝜏 ∈ 𝛵𝛵 (2-21) 
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𝑦𝑦𝜏𝜏
𝑘𝑘,𝜛𝜛 = 1 ∀(𝑘𝑘,𝜛𝜛) ∈ Ω𝜏𝜏,1, 𝜏𝜏 ∈ 𝛵𝛵 (2-22) 

Although RAVLL is another mathematical problem with complementarity constraints, its 
optimal solution can be easily obtained by solving the NE problem, with the deployment plan 
fixed. Below is the procedure of the active-set algorithm. The convergence of the algorithm has 
been proved by Zhang et al. (2009), thus is not presented here. 

Step 0: Set 𝜖𝜖 = 1 and solve NE with an initial deployment plan ∪𝜏𝜏∈𝛵𝛵 �Ω𝜏𝜏,0
1 ,Ω𝜏𝜏,1

1 � for each year 
𝜏𝜏 ∈ 𝛵𝛵. 

Step 1: Construct a solution (𝒙𝒙,𝒅𝒅,𝜼𝜼,𝝆𝝆,𝒚𝒚)𝑇𝑇 to RAVLL based on the optimal solutions derived 
from solving NE with ∪𝜏𝜏∈𝛵𝛵 �Ω𝜏𝜏,0

𝜖𝜖 ,Ω𝜏𝜏,1
𝜖𝜖 �. Then, solve RAVLL to determine 𝜆𝜆𝑘𝑘,𝜛𝜛,𝜏𝜏

𝜖𝜖  and 
𝜇𝜇𝑘𝑘,𝜛𝜛,𝜏𝜏
𝜖𝜖 , the Lagrangian multipliers associated with constraints (2-21) and (2-22). Set 

𝑇𝑇𝑇𝑇𝜖𝜖 = ∑ ∑ �∑ 𝑛𝑛
�(𝛾𝛾1+𝜍𝜍)𝑑𝑑𝜏𝜏

𝑤𝑤,1𝐶𝐶𝜏𝜏
𝑤𝑤,1+𝛾𝛾2𝑑𝑑𝜏𝜏

𝑤𝑤,2𝐶𝐶𝜏𝜏
𝑤𝑤,2�

(1+𝜎𝜎)𝜏𝜏−1𝑚𝑚∈𝑀𝑀 �𝑤𝑤∈𝑊𝑊𝜏𝜏∈𝛵𝛵 . 

Step 2: Set 𝑄𝑄 = −∞ and adjust the active sets by performing the following steps: 

a) Let �𝒛𝒛�,𝒉𝒉�� solve the following knapsack problem: 

min� � 𝜆𝜆𝑘𝑘,𝜛𝜛,𝜏𝜏
𝜖𝜖 𝑧𝑧𝑘𝑘,𝜛𝜛,𝜏𝜏

(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,0
𝜖𝜖𝜏𝜏∈𝛵𝛵

−� � 𝜇𝜇𝑘𝑘,𝜛𝜛,𝜏𝜏
𝜖𝜖 ℎ𝑘𝑘,𝜛𝜛,𝜏𝜏

(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,1
𝜖𝜖𝜏𝜏∈𝛵𝛵

 

 s.t.  

Λ�𝑎𝑎 + 𝑐𝑐𝑎̅𝑎 ⋅�� � 𝜃𝜃𝑎𝑎,𝑘𝑘2𝜛𝜛−1
(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,1

𝜖𝜖

+ � 𝜃𝜃𝑎𝑎,𝑘𝑘𝑧𝑧𝑘𝑘,𝜛𝜛,𝜏𝜏2𝜛𝜛−1
(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,0

𝜖𝜖

− � 𝜃𝜃𝑎𝑎,𝑘𝑘ℎ𝑘𝑘,𝜛𝜛,𝜏𝜏2𝜛𝜛−1
(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,1

𝜖𝜖

�
𝜏𝜏∈𝛵𝛵

≥ 𝜇𝜇𝑎𝑎,∀𝑎𝑎 ∈ 𝐴𝐴 

� � 𝜆𝜆𝑘𝑘,𝜛𝜛,𝜏𝜏
𝜖𝜖 𝑧𝑧𝑘𝑘,𝜛𝜛,𝜏𝜏

(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,0
𝜖𝜖𝜏𝜏∈𝛵𝛵

−� � 𝜇𝜇𝑘𝑘,𝜛𝜛,𝜏𝜏
𝜖𝜖 ℎ𝑘𝑘,𝜛𝜛,𝜏𝜏

(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,1
𝜖𝜖𝜏𝜏∈𝛵𝛵

≥ 𝑄𝑄 

𝑧𝑧𝑘𝑘,𝜛𝜛,𝜏𝜏,ℎ𝑘𝑘,𝜛𝜛,𝜏𝜏 ∈ {0,1} 

If its optimal objective value is zero, stop and the current solution is optimal. 
Otherwise, go to Step 2b. 

b) Set: 
i. 𝐷𝐷 = ∑ ∑ 𝜆𝜆𝑘𝑘,𝜛𝜛,𝜏𝜏

𝜖𝜖 𝑧̂𝑧𝑘𝑘,𝜛𝜛,𝜏𝜏(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,0
𝜖𝜖𝜏𝜏∈𝛵𝛵 − ∑ ∑ 𝜇𝜇𝑘𝑘,𝜛𝜛,𝜏𝜏

𝜖𝜖 ℎ�𝑘𝑘,𝜛𝜛,𝜏𝜏(𝑘𝑘,𝜛𝜛)∈Ω𝜏𝜏,1
𝜖𝜖𝜏𝜏∈Γ , 

ii. Ω�𝜏𝜏,0 = �Ω𝜏𝜏,0
𝜖𝜖 − �(𝑘𝑘,𝜛𝜛) ∈ Ω𝜏𝜏,0

𝜖𝜖 : 𝑧̂𝑧𝑘𝑘,𝜛𝜛,𝜏𝜏 = 1�� ∪ �(𝑘𝑘,𝜛𝜛) ∈ Ω𝜏𝜏,1
𝜖𝜖 :ℎ�𝑘𝑘,𝜛𝜛,𝜏𝜏 =

1�,∀𝜏𝜏 ∈ 𝛵𝛵, 
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iii. Ω�𝜏𝜏,1 = �Ω𝜏𝜏,1
𝜖𝜖 − �(𝑘𝑘,𝜛𝜛) ∈ Ω𝜏𝜏,1

𝜖𝜖 :ℎ�𝑘𝑘,𝜛𝜛,𝜏𝜏 = 1�� ∪ �(𝑘𝑘,𝜛𝜛) ∈ Ω𝜏𝜏,0
𝜖𝜖 : 𝑧̂𝑧𝑘𝑘,𝜛𝜛,𝜏𝜏 =

1�,∀𝜏𝜏 ∈ 𝛵𝛵. 
c) Solve NE with a deployment plan 𝐲𝐲� compatible with ∪𝜏𝜏∈𝛵𝛵 �Ω�𝜏𝜏,0,Ω�𝜏𝜏,1�. If its social 

cost 𝑇𝑇𝑇𝑇 < 𝑇𝑇𝑇𝑇𝜖𝜖, go to Step 2d since the location plan ∪𝜏𝜏∈𝛵𝛵 �Ω�𝜏𝜏,0,Ω�𝜏𝜏,1� leads to a 
decrease in the social cost. Otherwise, set 𝑄𝑄 = 𝐷𝐷 + 𝜀𝜀, where 𝜀𝜀 > 0 is sufficiently 
small, and return to Step 2a. 

d) Set Ω𝜏𝜏,0
𝜖𝜖+1 = Ω�𝜏𝜏,0, Ω𝜏𝜏,1

𝜖𝜖+1 = Ω�𝜏𝜏,1, ∀𝜏𝜏 ∈ 𝛵𝛵, and 𝜖𝜖 = 𝜖𝜖 + 1. Go to Step 1. 

2.4 NUMERICAL EXAMPLES 

2.4.1 Basic Settings 
The numerical examples are conducted based on the south Florida network as shown in 

Figure 2-2, which consists of 232 regular links, 44 AV links, 82 nodes and 83 OD pairs. The OD 
demand is given in Table 2-1 and link characteristics are omitted due to space limitation. Table 
2-2 shows the paired links, in which each AV link is paired with one regular link. For example, 
link 233 is an AV link, and link 15 is the paired regular link. They have the same link 
characteristics except the initial number of lanes and per-lane capacity. Specifically, the initial 
capacities of AV links are set as 0, meaning that without deploying AV lanes, the AV links are 
only virtual links, which can not be utilized.  

We assume that the initial adoption rate of AVs for each OD pair is 2%, and the potential 
market size is 75% (Lavasani et al., 2016). The default model parameters include: (1) discount 
rate: 𝜎𝜎 = 0.03; (2) converting factor: 𝑛𝑛 = 365 × 24 = 8,760 (hour/year); (3) per-lane capacity 
of a regular link: 𝑐𝑐𝑎̅𝑎,∀𝑎𝑎 ∈ 𝐴𝐴\𝐴̂𝐴, equal to the link capacity divided by the number of lanes on that 
link; (4) per-lane capacity of an AV link: 𝑐𝑐𝑎̅𝑎,∀𝑎𝑎 ∈ 𝐴̂𝐴, equal to 2.5 times the per-lane capacity of 
the paired regular link; (5) planning horizon: |𝛵𝛵| = 40; (6) the number of trips: 𝐿𝐿𝜏𝜏𝑤𝑤 = 720 
(trips/year), ∀𝑤𝑤 ∈ 𝑊𝑊, 𝜏𝜏 ∈ Γ; (7) additional annual cost for using AVs: 𝑌𝑌𝜏𝜏 = 1,000 ($/year), ∀𝜏𝜏 ∈
Γ; (8) OD specific benefit threshold: 𝜙𝜙�𝑤𝑤 = 1,000 ($), ∀𝑤𝑤 ∈ 𝑊𝑊; (9) VOT: 𝛾𝛾1 = 0.5 and 𝛾𝛾2 = 0.5 
($/min); (10) unsafety factor for using CV: 𝜍𝜍 = 0.1 ($/min); (11) two parameters in Eq. (11): 
𝑎𝑎� = 0.3(1/year), 𝑏𝑏� = 0.00005(year/$); (12) minimum link capacity: 𝜇𝜇𝑎𝑎 = 𝑐𝑐𝑎̅𝑎,∀𝑎𝑎 ∈
𝐴𝐴\𝐴̂𝐴, and 𝜇𝜇𝑎𝑎 = 0,∀𝑎𝑎 ∈ 𝐴̂𝐴; (13) maximum number of AV lanes can be deployed each year: 𝐼𝐼𝑘𝑘 =
3,∀𝑘𝑘 ∈ 𝐾𝐾. It should be noted that all the above values are chosen for illustrative purpose. 
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Figure 2-2. South Florida network 
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Table 2-1. OD demand of south Florida network 

OD Demand OD Demand OD Demand OD Demand 
1-36 743.56 28-57 743.56 50-19 793.76 64-30 815.30 
1-57 860.80 28-63 863.41 50-59 758.15 66-31 768.05 
4-64 810.61 29-37 794.11 50-69 806.96 68-5 801.23 
5-40 837.18 29-62 806.96 51-21 804.53 70-82 802.10 
5-41 862.89 31-70 770.49 51-23 760.76 74-8 826.94 
6-42 823.64 32-24 763.02 52-44 768.92 74-33 843.44 
7-72 809.91 32-76 848.65 52-71 757.29 75-33 832.32 
8-47 847.60 32-80 824.16 53-24 820.68 76-8 777.95 
9-46 847.08 33-74 752.60 53-46 798.97 76-33 842.74 
10-45 825.72 34-48 812.35 53-75 766.84 76-53 816.17 
12-28 810.09 36-1 845.87 54-45 835.45 78-35 828.85 
13-2 823.98 40-30 789.77 54-78 841.53 78-53 769.79 
14-1 854.38 41-51 846.91 55-48 765.62 78-55 759.89 
19-4 843.26 43-7 802.79 55-79 862.37 81-8 767.19 
19-50 856.46 44-82 864.97 57-1 832.84 81-33 845.00 
21-51 861.33 45-54 803.49 58-29 774.83 81-52 826.07 
24-53 786.64 46-53 745.82 60-1 836.84 82-22 763.89 
24-82 797.93 48-8 812.00 61-1 746.69 82-42 838.40 
26-9 825.72 48-55 768.75 61-27 782.30 82-74 811.30 
26-10 781.78 49-10 749.82 61-49 815.12 82-80 766.67 
28-56 839.27 49-34 865.49 63-29 776.22 

  

 

Table 2-2. AV links and their paired links 

Pair AV 
link 

Paired 
link Pair AV 

link 
Paired 
link Pair AV 

link 
Paired 
link 

1 233 15 16 248 94 31 263 178 
2 234 20 17 249 102 32 264 180 
3 235 23 18 250 105 33 265 194 
4 236 34 19 251 111 34 266 196 
5 237 36 20 252 112 35 267 199 
6 238 52 21 253 113 36 268 201 
7 239 53 22 254 116 37 269 204 
8 240 84 23 255 123 38 270 205 
9 241 85 24 256 127 39 271 207 

10 242 87 25 257 130 40 272 209 
11 243 88 26 258 133 41 273 217 
12 244 89 27 259 135 42 274 218 
13 245 90 28 260 147 43 275 221 
14 246 91 29 261 150 44 276 231 
15 247 92 30 262 153    
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2.4.2 Plan Comparison 
In this section, we consider three different deployment plans to demonstrate how an 

appropriate plan can benefit the system performance. The first plan is to do nothing, meaning 
that no AV lanes will be deployed; the second plan is listed in Table 2-3; and the third plan is to 
deploy all the AV lanes in Table 2-3 at the first year (see Table 2-4). The social costs associated 
with these three plans are calculated to be $6.845 × 1011, $6.582 × 1011, and $6.814 × 1011, 
respectively. As can be observed, although the number of AV lanes and their locations are 
exactly the same for plan 2 and plan 3, the performance of plan 2 is much better than that of plan 
3 in term of the social cost. Compared with plan 1 (to do nothing), the former reduces the social 
cost by 3.84%, while the latter only leads to a reduction of 0.45%. It implies that considering the 
time dimension into the deployment plan is of critical importance.  

 

Table 2-3. Deployment plan 2 

Pair 𝜏𝜏 Number of AV 
lanes deployed Pair 𝜏𝜏 Number of AV 

lanes deployed Pair 𝜏𝜏 Number of AV 
lanes deployed 

2 21 1 13 10 1 22 11 1 
3 10 1 13 11 1 22 12 1 
4 11 1 14 12 1 23 25 2 
4 12 3 15 9 1 26 22 1 
5 11 3 15 11 1 27 35 1 
5 12 1 16 13 1 29 13 2 
5 17 1 17 10 1 30 13 1 
8 10 1 17 11 1 37 35 3 
8 11 1 18 10 1 37 36 1 

10 35 1 18 11 1 37 37 1 
10 36 1 19 10 1 39 35 3 
11 10 1 20 15 1 39 36 2 
11 11 1 21 12 1 42 1 2 
12 11 2 21 13 1    
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Table 2-4. Deployment plan 3 

Pair 𝜏𝜏 Number of AV 
lanes deployed Pair 𝜏𝜏 Number of AV 

lanes deployed Pair 𝜏𝜏 Number of AV 
lanes deployed 

2 1 1 14 1 1 23 1 2 
3 1 1 15 1 2 26 1 1 
4 1 4 16 1 1 27 1 1 
5 1 5 17 1 2 29 1 2 
8 1 2 18 1 2 30 1 1 
10 1 2 19 1 1 37 1 5 
11 1 2 20 1 1 39 1 5 
12 1 2 21 1 2 42 1 2 
13 1 2 22 1 2    

 

We further examine the evolution of AV market penetration and the annual cost under the 
three plans, as displayed in Figure 2-3 and Figure 2-4. It can be observed that the adoption rate 
resulted from plan 3 grows the fastest, which is easy to understand since plan 3 provides all the 
capacity for AVs at the very beginning of the modeling horizon. The annual costs for the first 
four years under plan 3 are much higher than those under the other two plans. The reason behind 
is when the level of market penetration of AVs is low, although deploying all the AV lanes can 
help to enlarge the gain of this portion of vehicles, it will lead to tremendous increase in the 
travel time of CVs. As a result, the total social welfare decreases. What’s worse, as shown in 
Figure 2-4, such negative effect can last for several years as it takes time for CV drivers to adopt 
AVs. On the contrary, although plan 2 does not promote the adoption rate as quickly as plan 3, it 
does reduce the social cost by a larger amount via deploying AV lanes progressively. It is 
worthwhile to highlight that, in plan 2, most of the AV lanes are deployed after the 10th year 
when the AV market penetration is high enough, i.e., 26% (see Figure 2-3). When the market 
penetration of AVs is low (e.g., at the first several years), only two AV lanes are deployed (see 
Table 2-3). 
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Figure 2-3. Evolution of AV market penetration under various plans 

 

Figure 2-4. Evolution of annual cost under various plans 

 

2.4.3 Sensitivity Analysis 
As many parameters have impact on the market penetration of AVs, sensitivity analysis is 

conducted in this section. All the numerical experiments in this section are based on plan 2.  
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Figure 2-5 shows the AV market penetration curves with variable capacity ratios between 
AV lanes and regular lanes. Specifically, “3.0 times” means that the per-lane capacity becomes 
tripled when it is converted from a regular lane to an AV lane. Interestingly, although the growth 
rate increases as the capacity ratio increases, the differences among them are indistinctive in 
Figure 2-5, which indicates that increasing the per-lane capacity of AV lanes will not 
significantly promote the market penetration. It makes sense because the coverage area of AV 
links is relatively small, thus increasing their capacities only leads to limited reduction in the 
AVs’ trip times. Actually, the total social costs associated with “1.5 times”, “2.0 times”, “2.5 
times”, and “3.0 times” are $6.693 × 1011, $6.619 × 1011, $6.582 × 1011, and $6.562 × 1011, 
respectively. The variance is very small. 

 

Figure 2-5. Evolution of AV market penetration with variable ratios of AV-lane capacity 
over regular-lane capacity  

 

Figure 2-6 specifies the evolution of AV market penetration with different unsafety 
factors (i.e., 𝜍𝜍). As 𝜍𝜍 increases, the growth rate increases, and it takes fewer years to reach the 
potential market size. The reason is straightforward: when the unsafety factor of using CVs 
becomes larger, the incentive for people to adopt AVs will be higher.    
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Figure 2-6. Evolution of AV market penetration with different unsafety factors 

 

Figure 2-7. Evolution of AV market penetration with different VOTs of AVs 

 

Traveling with AVs, people can concentrate on dealing with other personal matters 
instead of driving, thus their VOTs (i.e., 𝛾𝛾2) are envisioned to be no greater than those traveling 
with CVs (i.e., 𝛾𝛾1). To examine how 𝛾𝛾2 affects the AV adoption rate, Figure 2-7 plots the 
penetration curves with various 𝛾𝛾2. It can be observed that as 𝛾𝛾2 increases, the growth rate 
increases, and the time to reach the saturation point becomes shorter. For example, when 𝛾𝛾2 =
0.2 ($/min), it only takes 12 years to reach the saturation point, which is only half of the time 
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needed when 𝛾𝛾2 = 0.5 ($/min). Accordingly, we may expect that the higher autonomous level of 
AVs is, the higher adoption rate will be. 

To enable full-autonomous driving, intelligent control systems and various types of 
sensors (e.g., cameras, radar, and ultrasonic sensors) are required. Consequently, AVs are usually 
more expensive to use than CVs, and the additional costs become a critical factor preventing 
people from adopting AVs. Figure 2-8 describes how the evolution curve of AV market 
penetration changes with changing additional annual cost. As expected, higher additional annual 
costs will lead to lower growth rates. However, the saturation points do not vary much with 
different additional annual costs. Specifically, it takes about 26 years to achieve the potential 
market size for all scenarios.  

 

Figure 2-8. Evolution of AV market penetration with different additional annual costs for 
using AVs 

 

As the number of annual trips varies from person to person, Figure 2-9 illustrates its 
impact on the AV market evolution. As can be seen, increasing the number of annual trips results 
in increased adoption rate of AVs, as well as fewer years to reach the saturation point. This is 
because more benefit can be derived when more trips are involved as per Eq. (13). 

To investigate the impact of the potential market size on the market penetration curve, 
simulation experiments based on four potential market sizes: 65%, 75%, 85%, and 95% are 
conducted. Figure 2-10 illustrates the associated evolution patterns of AV market penetration. 
All patterns have similar growth rates in the earlier years (e.g., year 1 to10), while the growth 
rates diverge in the later years, and higher potential market sizes lead to larger growth rates. It is 
worthwhile to point out that the saturation points associated with different potential market sizes 
do not vary much, which is in agreement with the finding of Lavasani et al. (2016)  
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Figure 2-9. Evolution of AV market penetration with different numbers of annual trips 

 

Figure 2-10. Evolution of AV market penetration with different potential market sizes 

 

2.4.4 Optimal Location Plan 
In this section, we solve AVLL for the south Florida network. Instead of starting with 

only one initial deployment plan, we start with different initial plans for the active-set algorithm, 
and take the best optimal plan as the final solution. By doing so, some poor local solution can be 
avoided. The final deployment plan obtained is given in Table 2-5, and the associated social cost 
is $6.578 × 1011. Compared with plan 1 (to do nothing), the optimal plan reduces the social cost 
by $2.674 × 1010 or 3.91%. Figure 2-11 and Figure 2-12 illustrate the evolution of AV market 
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penetration and annual cost under both the optimal plan and plan 1. As we can see, the optimal 
plan does not lead to reduced annual cost until the 9th year, when the AV market penetration 
reaches a relative high rate.  

 

Table 2-5. Optimal deployment plan 

Pair 𝜏𝜏 Number of AV 
lanes deployed Pair 𝜏𝜏 Number of AV 

lanes deployed Pair 𝜏𝜏 Number of AV 
lanes deployed 

2 21 2 13 10 2 21 12 2 
3 1 1 14 12 1 22 9 1 
4 12 3 15 8 1 22 11 1 
4 26 1 15 11 1 23 25 2 
5 11 3 16 13 1 26 22 1 
5 13 2 17 10 2 29 13 2 
8 9 2 18 10 2 30 13 1 

11 10 2 19 10 1 42 1 1 
12 11 2 20 15 1 42 2 1 

 

 

Figure 2-11. Evolution of AV market penetration under plan 1 and the optimal plan 
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Figure 2-12. Evolution of annual cost under plan 1 and the optimal plan 

 

CHAPTER 3   OPTIMAL DESIGN OF AUTONOMOUS VEHICLE ZONES 
IN TRANSPORTATION NETWORKS 

In this chapter, Section 3.1 illustrates the operational concept of AV zones considered in 
this chapter and basic assumptions for the proposed models. Section 3.2 formulates the mixed 
routing equilibrium model and proposes its solution algorithm. Further, Section 3.3 optimizes the 
design of AV zones. 

For convenient, we redefine the notations, and below are the ones frequently used in this 
chapter. 

Sets 
𝑁𝑁 Set of regular nodes 
𝐴𝐴 Set of regular links 
𝑁𝑁� Set of AV nodes 
𝐴̃𝐴 Set of AV links 
𝑁𝑁� Set of dummy AV nodes 
𝐴̂𝐴 Set of dummy AV links 
𝑊𝑊 Set of origin-destination (O-D) pairs 
𝑊𝑊�  Set of entrance-exit (E-E) pairs for the AV zone/network 
𝑀𝑀 Set of modes or classes, including CVs and AVs 
𝑃𝑃𝑤𝑤,𝑚𝑚 Set of paths between O-D pair 𝑤𝑤 ∈ 𝑊𝑊 by mode 𝑚𝑚 ∈ 𝑀𝑀 
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𝐴𝐴(𝑝𝑝) Set of links along path 𝑝𝑝 ∈ 𝑃𝑃𝑤𝑤,𝑚𝑚 between O-D pair 𝑤𝑤 ∈ 𝑊𝑊 by mode 𝑚𝑚 ∈ 𝑀𝑀 
Parameters 
𝑎𝑎 Link 𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 ∪ 𝐴̂𝐴 on the revised network 
𝑎𝑎� Link 𝑎𝑎� = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴̃𝐴 on the AV network 
𝑤𝑤 O-D pair 𝑤𝑤 ∈ 𝑊𝑊 
𝑤𝑤�  E-E pair 𝑤𝑤� ∈ 𝑊𝑊�  
𝑚𝑚 Mode 𝑚𝑚 ∈ 𝑀𝑀 
𝑑𝑑𝑤𝑤,𝑚𝑚 Travel demand between O-D pair 𝑤𝑤 ∈ 𝑊𝑊 by mode 𝑚𝑚 ∈ 𝑀𝑀 
𝑜𝑜(𝑤𝑤�) Entrance of E-E pair 𝑤𝑤� ∈ 𝑊𝑊�  
𝑑𝑑(𝑤𝑤�) Exit of E-E pair 𝑤𝑤� ∈ 𝑊𝑊�  
𝑝𝑝 Path 𝑝𝑝 ∈ 𝑃𝑃𝑤𝑤,𝑚𝑚 between O-D pair 𝑤𝑤 ∈ 𝑊𝑊 by mode 𝑚𝑚 ∈ 𝑀𝑀 
Variables 
𝑣𝑣𝑎𝑎 Traffic flow of link 𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴 
𝑣𝑣𝑎𝑎�  Traffic flow of link 𝑎𝑎� ∈ 𝐴̃𝐴 
𝑥𝑥𝑎𝑎
𝑤𝑤,𝑚𝑚 Link flow on link 𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴 for O-D pair 𝑤𝑤 ∈ 𝑊𝑊 by mode 𝑚𝑚 ∈ 𝑀𝑀 
𝑥𝑥𝑎𝑎�𝑤𝑤�  Link flow on link 𝑎𝑎� ∈ 𝐴̃𝐴 for E-E pair 𝑤𝑤� ∈ 𝑊𝑊�  
𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) Travel time of link 𝑎𝑎 ∈ 𝐴𝐴 specified by the link performance function  
𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) Travel time of link 𝑎𝑎� ∈ 𝐴̃𝐴 specified by the link performance function 
𝑐𝑐𝑎𝑎 Travel time of dummy AV link 𝑎𝑎 ∈ 𝐴̂𝐴 

 

3.1 PROBLEM DESCRIPTION 

We consider a network where both AVs and CVs are present. The origin-destination (O-
D) matrices of the vehicular trips of AVs and CVs are considered given. It is envisioned that a 
government agency strategically designs AV zones on a road network. An AV zone is cordoned 
off by a virtual loop. See Figure 3-1 for an example of where the nodes and links within loop C 
comprise an AV zone. To facilitate the presentation of the model formulation, this chapter 
hereinafter considers the deployment or presence of a single AV zone over the network, but the 
proposed model can be easily extended to the case with multiple AV zones directly. Below we 
illustrate the operational concept for the AV zone:  

i. Only AVs are allowed to use the links within the zone; 
ii. When entering the zone, AVs must report their exits of the zone to the control center, which 

routes AVs to traverse the zone;  
iii. Based on AVs’ entrances and exits, the control center routes AVs to minimize the total 

travel time in the zone.  

In the presence of an AV zone, when making their route choices, CVs need to avoid the 
zone while AVs will decide whether to access the zone, and where to enter and exit. Note that 
among all paths connecting the same O-D pair, some may traverse the AV zone while others will 
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not. When comparing these paths, AVs need to perceive the times spent within and outside of the 
AV zone.  

1 7

3

2

5

4 6

C

8

non-AV links

AV links

non-AV nodes

AV nodes

 

Figure 3-1. An example of AV zone 

 

Since the overarching goal of this chapter is AV zone planning, a static deterministic 
modeling framework is adopted. Below we summarize basic assumptions for our model 
formulations:  

i. AVs using the same entrance and exit of the AV zone may experience different travel times 
due to system-optimum routing. We assume that AVs perceive their travel times to be the 
minimum travel times between their corresponding entrances and exits of the AV zone.  

ii. All vehicles are assumed to minimize their own trip times. 
iii. The per-lane capacity of links within the AV zone is much larger than those of regular links 

due to vehicle automation.  
iv. The capacity of a regular link with mixed traffic of CVs and AVs remains the same as 

when only CVs use the link. 
v. The performance functions of regular and AV links may be different, but all are increasing 

functions with link flows.  
vi. In the network equilibrium model, there exists at least one usable path between each O-D 

pair for both AVs and CVs. When designing the AV zone, if certain inner nodes within the 
zone are origins or destinations, the corresponding demands of CVs will be discarded for 
equilibrium analysis, because no feasible path will exist for CVs between these O-D pairs. 
Subsequently, the resulting loss of social welfare will be calculated as part of the social 
cost, which is the objective that government agencies aim at minimizing.  

It is worth noting here that the equilibrium model developed in this chapter is different 
from previous network equilibrium analyses of AV flows, e.g., Correia and van Arem (2016), 
which focus on shared-use automated mobility and explicitly consider automated vehicle routing 
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to meet the travel demands of households; all households act selfishly in choosing their paths and 
schedules. In contrast, this chapter assumes that the vehicular O-D pattern of AVs is known and 
focuses on modeling the mixed routing behaviors that arise with the existence of AV zones.  

3.2 MIXED ROUTING EQUILIBRIUM MODEL 

Let 𝐺𝐺��𝑁𝑁�, 𝐴̃𝐴� denote the network within the AV zone, where 𝑁𝑁� and 𝐴̃𝐴 are the sets of nodes 
and links in the zone, respectively. For convenience, we hereinafter refer to them as AV network, 
AV nodes, and AV links. Based on 𝐺𝐺��𝑁𝑁�, 𝐴̃𝐴�, we construct a dummy AV network to replace the 
original AV network. Specifically, such a dummy AV network only consists of those AV nodes 
that are either entrances or exits of the AV zone (e.g., nodes 2, 3, 5, and 6 in Figure 3-1, and we 
hereinafter refer to them as dummy AV nodes). Moreover, if an AV node is either an origin or a 
destination, it will also be regarded as an entrance or an exit of the AV zone. Further, dummy 
AV links are constructed to specify the connectivity between those nodes. For example, for the 
AV zone in Figure 3-1, if node 4 is neither an origin nor a destination, then the dummy AV links 
can be constructed as Figure 3-2(a); otherwise, Figure 3-2(b). By doing so, each dummy AV link 
represents a set of paths connecting an entrance and an exit. For example, dummy AV link 2-3 in 
Figure 3-2(a) represents paths 2 → 3, 2 → 4 → 3, and 2 → 5 → 4 → 3 in Figure 3-1. 
Consequently, the flow on dummy link 2-3 represents the demand between entrance 2 and exit 3. 
In addition, as per Assumption i in Section 2, its travel time is equal to the shortest time of paths 
2 → 3, 2 → 4 → 3, and 2 → 5 → 4 → 3 in Figure 3-1. In other words, a dummy AV link can be 
viewed as the shortest path connecting the associated entrance and exit. Let 𝐺𝐺��𝑁𝑁�, 𝐴̂𝐴� denote the 
dummy AV network where 𝑁𝑁� and 𝐴̂𝐴 are the sets of dummy AV nodes and links.  

Let 𝑁𝑁 and 𝐴𝐴 denote the sets of non-AV or regular nodes and non-AV or regular links that 
are nodes and links outside of the AV zone (e.g., nodes 1, 7, and links 1-3, 8-1 in Figure 3-1). 
Let 𝐺𝐺�𝑁𝑁 ∪ 𝑁𝑁�,𝐴𝐴 ∪ 𝐴̂𝐴� denote the network containing non-AV nodes, non-AV links, and dummy 
AV nodes and links (we refer to 𝐺𝐺 as a revised network). For example, if node 4 is neither an 
origin nor a destination, then Figure 3-3 illustrates the revised network. In a revised network, we 
only need to consider the user-optimum routing principle without worrying about the mixed 
routing behaviors that exist in the original network.  
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Figure 3-2. Dummy AV networks 
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Figure 3-3. A revised network 

 

We represent a link in the revised network as 𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴, or its starting and ending nodes, 
i.e., 𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 ∪ 𝐴̂𝐴. Similarly, 𝑎𝑎� ∈ 𝐴̃𝐴 represents an AV link. Let 𝑊𝑊 and 𝑊𝑊�  denote the sets of 
O-D pairs for the revised network (note that these O-D pairs are the same as those in the original 
network), and entrance-exit (E-E) pairs associated with the AV network. Further, we use 𝑜𝑜(𝑤𝑤�) 
and 𝑑𝑑(𝑤𝑤�) to denote the entrance and exit of E-E pair 𝑤𝑤� ∈ 𝑊𝑊� . Let 𝑀𝑀 be the set of transportation 
modes CVs and AVs, i.e., 𝑀𝑀 = {𝐶𝐶,𝐴𝐴}. Let 𝑑𝑑𝑤𝑤,𝑚𝑚 and 𝑃𝑃𝑤𝑤,𝑚𝑚 represent the travel demand and the 
set of paths between O-D pair 𝑤𝑤 ∈ 𝑊𝑊 by mode 𝑚𝑚 ∈ 𝑀𝑀, respectively. Let 𝑥𝑥𝑎𝑎

𝑤𝑤,𝑚𝑚 be the flow on 
link 𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴 for O-D pair 𝑤𝑤 ∈ 𝑊𝑊 by mode 𝑚𝑚 ∈ 𝑀𝑀, and 𝑥𝑥𝑎𝑎�𝑤𝑤�  be the flow on link 𝑎𝑎� ∈ 𝐴̃𝐴 for E-E 
pair 𝑤𝑤� ∈ 𝑊𝑊� . Let 𝑣𝑣𝑎𝑎 and 𝑣𝑣𝑎𝑎�  be the aggregate flows of links 𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴 and 𝑎𝑎� ∈ 𝐴̃𝐴. Let 𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) and 
𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) define the travel times of links 𝑎𝑎 ∈ 𝐴𝐴 and 𝑎𝑎� ∈ 𝐴̃𝐴 specified by the performance functions 
of the links. Note that, according to Assumption iii, the per-lane capacity of each link within the 
AV zone, i.e., 𝑎𝑎� ∈ 𝐴̃𝐴, will be substantially improved. Let 𝑐𝑐𝑎𝑎 represent the travel time of dummy 
AV link 𝑎𝑎 ∈ 𝐴̂𝐴. 

3.2.1 Travel Time of Dummy Links 
As previously mentioned, 𝑐𝑐𝑎𝑎 is assumed to be equal to the minimum trip time of the 

corresponding E-E pair 𝑤𝑤� ∈ 𝑊𝑊� . Specifically, with a given traffic flow distribution of the AV 
network, 𝑣𝑣𝑎𝑎� ,∀𝑎𝑎� ∈ 𝐴̃𝐴, finding the shortest path can be formulated as follows for each E-E pair 
𝑤𝑤� ∈ 𝑊𝑊� : 

SP: 

min
𝒛𝒛
� 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�)𝑧𝑧𝑎𝑎�𝑤𝑤�

𝑎𝑎�∈𝐴𝐴�

 

s.t. 𝛥̃𝛥𝒛𝒛𝑤𝑤� = 𝐸𝐸�𝑤𝑤�   (3-1) 

𝑧𝑧𝑎𝑎�𝑤𝑤� ≥ 0  ∀𝑎𝑎� ∈ 𝐴̃𝐴  (3-2) 
where ∆�  is the node-link incidence matrix associated with the AV network and 𝐸𝐸�𝑤𝑤�  is a vector with 
a length of |𝑁𝑁�|. The vector consists of two-nonzero components: one has a value of 1 in the 



 
 

35 
 

Infrastructure Adaptation Planning for Autonomous Vehicles 

component corresponding to the entrance of 𝑤𝑤� ∈ 𝑊𝑊� , and the other has a value of −1 in the 
component corresponding to the exit of 𝑤𝑤� ∈ 𝑊𝑊� .  

In the above, the objective function is to minimize the total trip time. Constraint (3-1) 
ensures flow balance, and constraint (3-2) makes sure that 𝒛𝒛 are nonnegative variables. Since the 
matrix associated with constraint (3-1) is totally unimodular, the optimal solution of SP must be 
integers. Further, based on constraint (3-1) and the objective function, it is easy to verify that the 
optimal value of 𝒛𝒛 cannot be greater than 1. Therefore, the optimal solution 𝑧𝑧𝑎𝑎�𝑤𝑤�∗,∀𝑎𝑎� ∈ 𝐴̃𝐴, is equal 
to either 0 or 1. Specifically, 𝑧𝑧𝑎𝑎�𝑤𝑤�∗ = 1 if link 𝑎𝑎� is utilized, and 0 otherwise. Therefore, we can 
obtain the travel time of dummy AV link 𝑎𝑎 ∈ 𝐴̂𝐴 as below: 

𝑐𝑐𝑎𝑎 = � 𝛽𝛽𝑎𝑎𝑤𝑤� �� 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�)𝑧𝑧𝑎𝑎�𝑤𝑤�
∗

𝑎𝑎�∈𝐴𝐴�

�
𝑤𝑤�∈𝑊𝑊�

 (3-3) 

where 𝛽𝛽𝑎𝑎𝑤𝑤�  is a binary parameter that equals 1 if the dummy link 𝑎𝑎 corresponds to the E-E pair 𝑤𝑤� ∈
𝑊𝑊� , and 0 otherwise.  

SP is a linear program written for each E-E pair 𝑤𝑤� ∈ 𝑊𝑊� . Its optimality conditions are 
stated as follows: 

(3-1)-(3-2) 

�𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) − 𝜅𝜅𝑖𝑖𝑤𝑤� + 𝜅𝜅𝑗𝑗𝑤𝑤� �𝑧𝑧𝑎𝑎�𝑤𝑤� = 0 ∀𝑎𝑎� = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (3-4) 

𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) − 𝜅𝜅𝑖𝑖𝑤𝑤� + 𝜅𝜅𝑗𝑗𝑤𝑤� ≥ 0 ∀𝑎𝑎� = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (3-5) 
where 𝜿𝜿 are the multipliers associated with constraints (3-1). 

3.2.2 User Equilibrium Flow Distribution in the Revised Network 
As previously mentioned, in the revised network, we only need to consider the user-

optimum routing principle. With 𝑐𝑐𝑎𝑎 calculated as above for 𝑎𝑎 ∈ 𝐴̂𝐴, the user equilibrium 
conditions can be mathematically defined as follows:   

𝚫𝚫𝒙𝒙𝑤𝑤,𝑚𝑚 = 𝑬𝑬𝑤𝑤,𝑚𝑚𝑑𝑑𝑤𝑤,𝑚𝑚 ∀𝑚𝑚 ∈ 𝑀𝑀,𝑤𝑤 ∈ 𝑊𝑊 (3-6) 

𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (3-7) 

𝑥𝑥𝑎𝑎
𝑤𝑤,𝐶𝐶 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊 (3-8) 

𝑥𝑥𝑎𝑎
𝑤𝑤,𝐶𝐶 = 0 ∀𝑎𝑎 ∈ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (3-9) 

𝑣𝑣𝑎𝑎 = � � 𝑥𝑥𝑎𝑎
𝑤𝑤,𝑚𝑚

𝑚𝑚∈𝑀𝑀𝑤𝑤∈𝑊𝑊

 ∀𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴 (3-10) 

𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝑚𝑚 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝑚𝑚 ≥ 0 ∀𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊,𝑚𝑚 ∈ 𝑀𝑀 (3-11) 

𝑐𝑐𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝐴𝐴 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝐴𝐴 ≥ 0 ∀𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (3-12) 
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�𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝑚𝑚 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝑚𝑚� ⋅ 𝑥𝑥𝑎𝑎
𝑤𝑤,𝑚𝑚 = 0 ∀𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊,𝑚𝑚 ∈ 𝑀𝑀 (3-13) 

�𝑐𝑐𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝐴𝐴 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝐴𝐴� ⋅ 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴 = 0 ∀𝑎𝑎 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (3-14) 

where ∆ is the node-link incidence matrix associated with the revised network and 𝐸𝐸𝑤𝑤 is a vector 
with a length of |𝑁𝑁|. The vector consists of two-nonzero components: one has a value of 1 in the 
component corresponding to the origin of 𝑤𝑤 ∈ 𝑊𝑊 , and the other has a value of −1  in the 
component corresponding to the destination of 𝑤𝑤 ∈ 𝑊𝑊. 𝝆𝝆 are auxiliary variables representing the 
node potentials.  

In the above, constraint (3-6) ensures flow balance. Constraints (3-7) and (3-8) imply that 
the link flow between each O-D pair by each mode should be nonnegative, and constraint (3-9) 
ensures that only AVs can use dummy AV links. Constraint (3-10) implies that the aggregate 
link flow is the summation of link flow between different O-D pairs by different modes. 
Constraints (3-11)-(3-14) are complementary slackness conditions, ensuring that the perceived 
travel times of utilized paths between an O-D pair for the same mode are the same, but less than 
or equal to that of any unutilized usable path. Specifically, a path is usable for a mode if all the 
links along the path are usable for the mode. For example, a path containing any AV link is not 
usable for CVs.  

3.2.3 System-Optimum Routing within the AV Network 
As mentioned before, the demand for each E-E pair equals the flow of the corresponding 

dummy AV link. Specifically, given the flow distribution of the revised network, the flow of a 
dummy AV link, say 𝑎̈𝑎 ∈ 𝐴̂𝐴, is calculated to be ∑ 𝑥𝑥𝑎̈𝑎

𝑤𝑤,𝐴𝐴
𝑤𝑤∈𝑊𝑊 . Therefore, the system-optimum flow 

distribution within the AV zone can be formulated as follows: 

�𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗
𝑤𝑤�

𝑗𝑗

−�𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)
𝑤𝑤�

𝑘𝑘

= �𝛽𝛽𝑎𝑎𝑤𝑤�

𝑎𝑎∈𝐴𝐴�

� 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴

𝑤𝑤∈𝑊𝑊

 ∀𝑤𝑤� ∈ 𝑊𝑊�  (3-15) 

�𝑥𝑥𝑑𝑑(𝑤𝑤�),𝑗𝑗
𝑤𝑤�

𝑗𝑗

−�𝑥𝑥𝑘𝑘,𝑑𝑑(𝑤𝑤�)
𝑤𝑤�

𝑘𝑘

= −�𝛽𝛽𝑎𝑎𝑤𝑤�

𝑎𝑎∈𝐴𝐴�

� 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴

𝑤𝑤∈𝑊𝑊

 ∀𝑤𝑤� ∈ 𝑊𝑊�  (3-16) 

�𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�

𝑗𝑗

−�𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�

𝑘𝑘

= 0 ∀𝑖𝑖 ∈ 𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)},𝑤𝑤� ∈ 𝑊𝑊�  (3-17) 

𝑥𝑥𝑎𝑎�𝑤𝑤� ≥ 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (3-18) 

𝑣𝑣𝑎𝑎� = � 𝑥𝑥𝑎𝑎�𝑤𝑤�

𝑤𝑤�∈𝑊𝑊�

 ∀𝑎𝑎� ∈ 𝐴̃𝐴 (3-19) 

𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) + 𝑣𝑣𝑎𝑎�𝑡𝑡𝑎𝑎�′ (𝑣𝑣𝑎𝑎�) − 𝜌𝜌�𝑖𝑖𝑤𝑤� + 𝜌𝜌�𝑗𝑗𝑤𝑤� ≥ 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (3-20) 

�𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) + 𝑣𝑣𝑎𝑎�𝑡𝑡𝑎𝑎�′ (𝑣𝑣𝑎𝑎�) − 𝜌𝜌�𝑖𝑖𝑤𝑤� + 𝜌𝜌�𝑗𝑗𝑤𝑤�� ⋅ 𝑥𝑥𝑎𝑎�𝑤𝑤� = 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (3-21) 

where 𝝆𝝆� are auxiliary variables, representing the node potentials. 
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In the above, constraints (3-15)-(3-17) ensure flow balance. Constraint (3-18) suggests 
that the link flow of each E-E pair is nonnegative. Constraint (3-19) implies that the AV link 
flow is the summation of link flow for different E-E pairs. Constraints (3-20) and (3-21) are 
complementary slackness conditions, specifying that marginal travel times of utilized paths 
between an E-E pair are the same, but less than or equal to that of any unutilized path. 

3.2.4 Mixed Routing Equilibrium 
Definition 1. At the mixed routing equilibrium, for the same mode, perceived travel 

times of utilized paths between an O-D pair are the same, but less than or equal to that of any 
unutilized usable path between the same O-D pair. 

In the above definition, perceived travel times for CVs are their actual trip times, while 
the ones for AVs are the actual travel time spent outside of the AV zone, plus the perceived 
travel times spent within the zone. Recall that the latter is equivalent to the minimum travel time 
between AVs’ corresponding entrances and exits of the AV zone (see Assumption i).  

Mathematically, we can define the mixed routing equilibrium conditions (MRE) for the 
original network as (3-1)-(3-21). Specifically, (3-6)-(3-14) specify that, given the perceived 
travel times within the AV zone, the flow distribution must satisfy the network equilibrium 
conditions for the revised network; (3-1)-(3-5) ensure that AVs’ perceived travel times within the 
AV zone equal the minimum travel times between their corresponding entrances and exits of the 
zone; (3-15)-(3-21) imply that, within the AV zone, AVs must follow the system-optimum 
routing principle.  

To further formulate an equivalent mixed routing equilibrium model, we define a set Λ =
 {(𝒗𝒗,𝒙𝒙,𝝆𝝆�, 𝒛𝒛, 𝝉𝝉)}, where the vector satisfies the following conditions: 

(3-1), (3-2), (3-6)-(3-10), (3-18), (3-19)   
𝜌𝜌�𝑖𝑖𝑤𝑤� ≥ 0 ∀𝑖𝑖 ∈ 𝑁𝑁�,𝑤𝑤� ∈ 𝑊𝑊�  (3-22) 
𝜏𝜏𝑖𝑖𝑤𝑤� ≥ 0 ∀𝑖𝑖 ∈ 𝑁𝑁�\𝑑𝑑(𝑤𝑤�),𝑤𝑤� ∈ 𝑊𝑊�  (3-23) 

where 𝝉𝝉 are auxiliary variables introduced to facilitate formulating the problem as follows. 

Proposition 1. The mixed routing equilibrium conditions (3-1)-(3-21) are equivalent to 
finding (𝒗𝒗∗,𝒙𝒙∗,𝝆𝝆�∗, 𝒛𝒛∗, 𝝉𝝉∗) ∈ Λ, which solves the following variational inequality: 

MRE-VI: 

∑ 𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎∗)(𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑎𝑎∗)𝑎𝑎∈𝐴𝐴 + ∑ �∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑤𝑤�∈𝑊𝑊�  ∑ 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�∗)𝑧𝑧𝑎𝑎�𝑤𝑤�
∗

𝑎𝑎�∈𝐴𝐴� �(𝑣𝑣𝑎𝑎 − 𝑣𝑣𝑎𝑎∗)𝑎𝑎∈𝐴𝐴� + ∑ ∑ �𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�∗) +𝑎𝑎�∈𝐴𝐴�𝑤𝑤�

𝑣𝑣𝑎𝑎�∗𝑡𝑡𝑎𝑎�′ (𝑣𝑣𝑎𝑎�∗) − �𝜌𝜌�𝑖𝑖𝑤𝑤�∗ − 𝜌𝜌�𝑗𝑗𝑤𝑤�∗�� �𝑥𝑥𝑎𝑎�𝑤𝑤� − 𝑥𝑥𝑎𝑎�𝑤𝑤�∗� + ∑ ��∑ 𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗
𝑤𝑤�∗

𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)
𝑤𝑤�∗

𝑘𝑘 � −𝑤𝑤�

∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑎𝑎∈𝐴𝐴� ∑ 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴∗

𝑤𝑤∈𝑊𝑊 ��𝜌𝜌�𝑜𝑜(𝑤𝑤�)
𝑤𝑤� − 𝜌𝜌�𝑜𝑜(𝑤𝑤�)

𝑤𝑤�∗ � − ∑ ��∑ 𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗
𝑤𝑤�∗

𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)
𝑤𝑤�∗

𝑘𝑘 � −𝑤𝑤�

∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑎𝑎∈𝐴𝐴� ∑ 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴∗

𝑤𝑤∈𝑊𝑊 ��𝜏𝜏𝑜𝑜(𝑤𝑤�)
𝑤𝑤� − 𝜏𝜏𝑜𝑜(𝑤𝑤�)

𝑤𝑤�∗ � + ∑ ∑ �∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�∗𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�∗

𝑘𝑘 ��𝜌𝜌�𝑖𝑖𝑤𝑤� − 𝜌𝜌�𝑖𝑖𝑤𝑤�∗�𝑖𝑖∈𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)}𝑤𝑤� −
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∑ ∑ �∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�∗𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�∗

𝑘𝑘 ��𝜏𝜏𝑖𝑖𝑤𝑤� − 𝜏𝜏𝑖𝑖𝑤𝑤�∗�𝑖𝑖∈𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)}𝑤𝑤� + ∑ ∑ 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�∗)�𝑧𝑧𝑎𝑎�𝑤𝑤� − 𝑧𝑧𝑎𝑎�𝑤𝑤�∗�𝑎𝑎�∈𝐴𝐴�𝑤𝑤� ≥
0,∀(𝒗𝒗,𝒙𝒙,𝝆𝝆�, 𝒛𝒛, 𝝉𝝉) ∈ Λ  

The equivalence can be established by expressing the optimality conditions of MRE-VI 
and comparing them with the defined mixed routing equilibrium conditions, i.e., MRE. See the 
appendix for a proof.  

Proposition 2. MRE-VI has at least one solution. 

Proof: According to the appendix, we know that 𝝉𝝉 are nonnegative auxiliary variables 
that are only used to guarantee the flow balance within the AV network, i.e., (A.44), (A.47), and 
(A.48); thus, adding some upper bounds to 𝝉𝝉 will not affect the other optimal solutions 
(𝒗𝒗∗,𝒙𝒙∗,𝝆𝝆�∗, 𝒛𝒛∗). Furthermore, since 𝝆𝝆� represent node potentials, we can always find some upper 
bounds for them, within which optimal values of these multipliers still exist. As a result, we can 
construct a restricted MRE-VI by adding corresponding upper bounds to (𝝆𝝆�, 𝝉𝝉). In addition, link 
flows 𝒙𝒙 and 𝒗𝒗 are bounded, and the upper bound of 𝒛𝒛 is 𝟏𝟏, which has been demonstrated in 
Section 3.1. Therefore, the restricted MRE-VI problem has a compact and convex feasible 
region. Given that all the functions are continuous, the restricted MRE-VI admits at least one 
solution (see, e.g., Harker and Pang, 1990), so as the original MRE-VI. � 

However, even if all the link performance functions of both the regular and AV links are 
strictly monotone, we cannot guarantee the uniqueness of the link flow solution to MRE-VI, as 
the travel time functions of dummy links (see equality (3-3)) may not be strictly monotone with 
respect to the link flows in the revised network.  

To illustrate, we consider a simple AV network shown in Figure 3-4(a). The link travel 
time functions are assumed to be: 𝑡𝑡12(𝑥𝑥12) = 3𝑥𝑥12, 𝑡𝑡13(𝑥𝑥13) = 3𝑥𝑥13, and 𝑡𝑡23(𝑥𝑥23) = 3𝑥𝑥23, 
where 𝑥𝑥12, 𝑥𝑥13, and 𝑥𝑥23 are the corresponding link flows. Suppose that 1-2, 1-3, and 2-3 are E-E 
pairs, then the dummy network is constructed as the same as the original AV network (see Figure 
3-4(b)). It is worth pointing out that dummy link 1-3 represents the shorter path of path 1 → 3 
and path 1 → 2 → 3. Let 𝑒𝑒12, 𝑒𝑒13, and 𝑒𝑒23 denote the dummy flows of link 1-2, 1-3, and 2-3, i.e., 
the demand of E-E pair 1-2, 1-3, and 2-3, respectively. Furthermore, we assume that 𝑒𝑒13 > 𝑒𝑒12 +
𝑒𝑒23. It is easy to verify that under this assumption, both paths 1 → 3 and 1 → 2 → 3 of the AV 
network will be utilized by the trips from E-E pair 1-3. Define the trips using path 1 → 2 → 3 as 
𝑒̂𝑒13, then the ones using path 1 → 3 are 𝑒𝑒13 − 𝑒̂𝑒13. As a result, we have 𝑥𝑥12 = 𝑒𝑒12 + 𝑒̂𝑒13, 𝑥𝑥13 =
𝑒𝑒13 − 𝑒̂𝑒13, and 𝑥𝑥23 = 𝑒𝑒23 + 𝑒̂𝑒13. According to the system-optimum routing principle, the 
marginal cost of path 1 → 3 and 1 → 2 → 3 must be equivalent. That is,  

6(𝑒𝑒13 − 𝑒̂𝑒13) = 6(𝑒𝑒12 + 𝑒̂𝑒13) + 6(𝑒𝑒23 + 𝑒̂𝑒13) 

which yields 𝑒̂𝑒13 = 1
3

(𝑒𝑒13 − 𝑒𝑒12 − 𝑒𝑒23).  

Based on the flow distribution, we can obtain the travel time functions of the dummy 
links: 𝑐𝑐12 = 𝑡𝑡12(𝑥𝑥12) = 2𝑒𝑒12 + 𝑒𝑒13 − 𝑒𝑒23, 𝑐𝑐13 = 𝑡𝑡13(𝑥𝑥13) = 2𝑒𝑒13 + 𝑒𝑒12 + 𝑒𝑒23, and 𝑐𝑐23 =
𝑡𝑡23(𝑥𝑥23) = 2𝑒𝑒23 + 𝑒𝑒13 − 𝑒𝑒12. It is easy to verify that the Jacobian matrix of 𝒄𝒄 with respect to 𝒆𝒆 is 
only positive semi-definite, rather than positive definite. That is, the travel time functions of 
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dummy links are not strictly monotone with respect to the link flows in the revised network. 
Consequently, the link flow solution to MRE-VI may not be unique. 

1 2

3

1 2

3

(a) AV network (b) Dummy AV network
 

Figure 3-4. A simple AV network and its corresponding dummy network 

 

3.2.5 Solution Procedure 
In this section, we solve MRE-VI by reformulating it to be the following nonlinear 

optimization problem via a technique proposed by Aghassi et al. (2006): 

 MRE-NLP: 

min
𝒗𝒗,𝒙𝒙,𝝆𝝆�,𝒛𝒛,𝜶𝜶�,𝜷𝜷�,𝝀𝝀� ,𝜸𝜸�  

∑ 𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎)𝑣𝑣𝑎𝑎𝑎𝑎∈𝐴𝐴 + ∑ 𝑐𝑐𝑎𝑎(𝑣𝑣𝑎𝑎)𝑣𝑣𝑎𝑎𝑎𝑎∈𝐴𝐴� + ∑ ∑ �𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) + 𝑣𝑣𝑎𝑎�𝑡𝑡𝑎𝑎�′ (𝑣𝑣𝑎𝑎�) − �𝜌𝜌�𝑖𝑖𝑤𝑤� −𝑎𝑎�∈𝐴𝐴�𝑤𝑤�∈𝑊𝑊�

𝜌𝜌�𝑗𝑗𝑤𝑤��� 𝑥𝑥𝑎𝑎�𝑤𝑤� − ∑ ∑ ∑ 𝑑𝑑𝑖𝑖
𝑤𝑤,𝑚𝑚𝛼𝛼�𝑖𝑖

𝑤𝑤,𝑚𝑚
𝑖𝑖∈𝑁𝑁𝑚𝑚∈𝑀𝑀𝑤𝑤∈𝑊𝑊 − ∑ �𝛾𝛾�𝑜𝑜(𝑤𝑤�)

𝑤𝑤� − 𝛾𝛾�𝑑𝑑(𝑤𝑤�)
𝑤𝑤� �𝑤𝑤�∈𝑊𝑊�   

s.t. (3-1), (3-2), (3-6)-(3-10), (3-18), (3-19), and (3-22) 
𝛽𝛽�𝑎𝑎 = 𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) ∀𝑎𝑎 ∈ 𝐴𝐴 
𝛽𝛽�𝑎𝑎 = � 𝛽𝛽𝑎𝑎𝑤𝑤�

𝑤𝑤�∈𝑊𝑊�

 �𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�)𝑧𝑧𝑎𝑎�𝑤𝑤�

𝑎𝑎�∈𝐴𝐴�

 ∀𝑎𝑎 ∈ 𝐴̂𝐴 

𝜆̃𝜆𝑎𝑎� = 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴 
𝛼𝛼�𝑖𝑖
𝑤𝑤,𝐴𝐴 − 𝛼𝛼�𝑗𝑗

𝑤𝑤,𝐴𝐴 − 𝛽𝛽�𝑎𝑎 ≤ 0 ∀𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 
𝛼𝛼�𝑖𝑖
𝑤𝑤,𝐶𝐶 − 𝛼𝛼�𝑗𝑗

𝑤𝑤,𝐶𝐶 − 𝛽𝛽�𝑎𝑎 ≤ 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊 
−𝜆̃𝜆𝑎𝑎� ≤ 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) + 𝑣𝑣𝑎𝑎�𝑡𝑡𝑎𝑎�′ (𝑣𝑣𝑎𝑎�) − 𝜌𝜌�𝑖𝑖𝑤𝑤� + 𝜌𝜌�𝑗𝑗𝑤𝑤�  ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  

��𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗
𝑤𝑤�

𝑗𝑗

−�𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)
𝑤𝑤�

𝑘𝑘

� −�𝛽𝛽𝑎𝑎𝑤𝑤�

𝑎𝑎∈𝐴𝐴�

� 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴

𝑤𝑤∈𝑊𝑊

= 0 ∀𝑤𝑤� ∈ 𝑊𝑊�  

�𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�

𝑗𝑗

−�𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�

𝑘𝑘

= 0 ∀𝑖𝑖 ∈ 𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)},𝑤𝑤� ∈ 𝑊𝑊�  

𝛾𝛾�𝑖𝑖𝑤𝑤� − 𝛾𝛾�𝑗𝑗𝑤𝑤� ≤ 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  
where 𝛼𝛼�𝑖𝑖

𝑤𝑤,𝐴𝐴, 𝛼𝛼�𝑖𝑖
𝑤𝑤,𝐶𝐶, 𝛽𝛽�𝑎𝑎, 𝜆̃𝜆𝑎𝑎� , and 𝛾𝛾�𝑖𝑖𝑤𝑤�  are auxiliary variables, and 𝑑𝑑𝑖𝑖

𝑤𝑤,𝑚𝑚 = 𝑑𝑑𝑤𝑤,𝑚𝑚, if 𝑖𝑖 = 𝑜𝑜(𝑤𝑤); 𝑑𝑑𝑖𝑖
𝑤𝑤,𝑚𝑚 =

−𝑑𝑑𝑤𝑤,𝑚𝑚, if 𝑖𝑖 = 𝑑𝑑(𝑤𝑤); otherwise, 𝑑𝑑𝑖𝑖
𝑤𝑤,𝑚𝑚 = 0. 
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Specifically, if the optimal value of MRE-NLP is 0, then its solution (𝒗𝒗∗,𝒙𝒙∗,𝝆𝝆�∗, 𝒛𝒛∗, 𝝉𝝉∗) is 
also the one to MRE-VI. 

3.2.6 Numerical Example 
In this section, numerical examples are conducted based on the network in Figure 3-1. 

Specifically, there are two O-D pairs with demands shown in Table 3-1, and the link 
performance function is assumed to be 𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) = 𝑎𝑎0 + 𝑏𝑏0 × 𝑣𝑣𝑎𝑎 min, where 𝑎𝑎0 and 𝑏𝑏0 are 
provided in Table 3-2. We construct an AV zone as per Figure 3-1. That is, nodes 2, 3, 4, 5, and 
6 are AV nodes. Accordingly, links 2-3, 2-4, 2-5, 3-4, 3-6, 4-3, 4-5, 4-6, 5-4, and 5-6 are all AV 
links. It is worthwhile to highlight that since node 4 is neither an origin nor a destination, the 
dummy network and revised network are constructed as Figure 3-2(a) and Figure 3-3, 
respectively. As per Assumption iii, we assume that the per-lane capacity becomes triple when a 
regular link is converted to an AV link. Hence, the AV link performance function is 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) =
𝑎𝑎0 + 𝑏𝑏0

3
× 𝑣𝑣𝑎𝑎�  min.  

 

Table 3-1. O-D demand 

O-D CV AV 
1-7 40 30 
8-7 25 15 

 

Table 3-2. Network characteristics 

Link 𝑎𝑎0 (min) 𝑏𝑏0 Link 𝑎𝑎0 (min) 𝑏𝑏0 Link 𝑎𝑎0 (min) 𝑏𝑏0 
1-2 1.00 1.00 3-4 1.50 1.00 5-4 1.00 1.00 
1-3 2.00 3.00 3-6 1.00 1.50 5-6 1.00 1.00 
1-5 1.00 1.00 3-7 1.00 1.00 5-7 2.00 2.00 
2-3 2.00 1.00 4-3 0.50 1.00 6-7 2.00 2.00 
2-4 1.00 0.50 4-5 1.00 1.00 8-1 1.00 1.00 
2-5 1.00 1.00 4-6 1.00 2.50 8-5 2.00 4.00 

 

Given the above setting, we obtain the equilibrium solution by solving MRE-NLP. 
Specifically, Table 3-3 and Table 3-4 display the equilibrium link flows for the original network 
(see Figure 3-1) and the dummy network (see Figure 3-2(a)), respectively. As we can see, since 
CVs are not permitted to use the AV links, the equilibrium link flows on the AV links and 
dummy AV links are all 0. As mentioned previously, the demand for each E-E pair equals the 
flow of the corresponding dummy AV link. Therefore, the equilibrium link flows in Table 3-4 
are also the E-E demand for the AV zone. Given the E-E demand, we obtain a system-optimum 
solution within the AV zone shown in Table 3-5 and Table 3-6. Comparing Table 3-3 with Table 
3-5, it is easy to verify that the AV-link flows in Table 3-3 exactly follow the system-optimum 
flow distribution, which is consistent with the operation concept iii that AVs are routed to 
minimize the total travel time in the AV zone. Furthermore, making a comparison between Table 
3-4 and Table 3-6, we can readily observe that the travel time of each dummy link in Table 3-4 is 
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equal to the minimum path travel time (i.e., the path travel times that are bold and underlined) of 
the corresponding E-E pair. For example, there are three paths 2 → 3, 2 → 4 → 3, and 2 → 5 →
4 → 3 between E-E pair 2-3, whose travel times are 7.16, 6.91, and 7.41 min, respectively (see 
Table 3-6). As expected, the travel time of dummy link 2-3 is 6.91 min (see Table 3-4), which 
equals the minimum of the three, i.e., 6.91.  

 

Table 3-3. Equilibrium link flow for the original network 

Link CV flow AV flow Travel time 
(min) Link CV flow AV flow Travel time 

(min) 
1-2 0.00 34.06 35.06 4-3 0.00 9.32 3.61 
1-3 23.96 0.00 73.87 4-5 0.00 0.00 1.00 
1-5 28.81 7.84 37.65 4-6 0.00 5.16 5.30 
2-3 0.00 15.48 7.16 5-4 0.00 0.65 1.22 
2-4 0.00 13.82 3.30 5-6 0.00 15.05 6.02 
2-5 0.00 4.76 2.59 5-7 41.04 0.00 84.09 
3-4 0.00 0.00 1.50 6-7 0.00 22.09 46.18 
3-6 0.00 1.88 1.94 8-1 12.76 11.91 25.67 
3-7 23.96 22.91 47.87 8-5 12.24 3.09 63.32 

 

Table 3-4. Equilibrium link flow for the dummy network 

Link AV flow Travel time (min) Link AV flow Travel time (min) 
2-3 22.91 6.91 3-6 0.00 1.94 
2-5 0.32 2.59 5-3 0.00 4.82 
2-6 10.83 8.60 5-6 11.25 6.02 
3-5 0.00 2.50    

 

Table 3-5. System-optimum link flow pattern within the AV zone 

Link AV flow Travel time (min) Link AV flow Travel time (min) 
2-3 15.48 7.16 4-3 9.32 3.61 
2-4 13.82 3.30 4-5 0.00 1.00 
2-5 4.76 2.59 4-6 5.16 5.30 
3-4 0.00 1.50 5-4 0.65 1.22 
3-6 1.88 1.94 5-6 15.05 6.02 
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Table 3-6. System-optimum path flow pattern within the AV zone 

E-E Path Path flow Path travel time (min) Marginal path travel 
time (min) 

2-3 2-3 13.60 7.16 12.32 
 2-4-3 9.32 6.91 12.32 
 2-5-4-3 0.00 7.41 12.32 

2-5 2-5 0.32 2.59 4.17 
 2-3-4-5 0.00 9.66 14.82 
 2-4-5 0.00 4.30 6.61 

2-6 2-3-4-6 0.00 13.96 23.42 
 2-3-4-5-6 0.00 15.67 25.85 
 2-3-6 1.88 9.10 15.20 
 2-4-3-6 0.00 8.85 15.20 
 2-4-5-6 0.00 10.32 17.64 
 2-4-6 4.51 8.60 15.20 
 2-5-4-3-6 0.00 9.35 15.20 
 2-5-4-6 0.65 9.10 15.20 
 2-5-6 3.79 8.60 15.20 

3-5 3-4-5 0.00 2.50 2.50 
3-6 3-4-5-6 0.00 8.52 13.53 

 3-4-6 0.00 6.80 11.10 
 3-6 0.00 1.94 2.88 

5-3 5-4-3 0.00 4.82 8.15 
5-6 5-4-3-6 0.00 6.77 11.03 

 5-4-6 0.00 6.52 11.03 
 5-6 11.25 6.02 11.03 

 

Table 3-7 shows the perceived travel times of CVs and AVs with and without the AV 
zone. As we can see, without the AV zone, both CVs and AVs perceive the same travel time for 
the same O-D pair, as they share the same road network and link performance functions. 
However, with the AV zone deployed, the perceived travel times of AVs between both O-D pairs 
decrease substantially (e.g., by 19% between O-D pair 1-7), while the ones of CVs increase 
considerably (e.g., by 10% between O-D pair 1-7). This is due to the fact that the AV zone can 
be utilized only by AVs. Furthermore, as the per-lane capacity of links within the AV zone is 
assumed to be much larger than those of regular links due to vehicle automation (see Assumption 
iii), the total travel time with the AV zone is thus expected to be reduced. It can be seen from 
Table 3-8 that with the presence of the AV zone, the system travel time decreases from 
13,202.75 min to 12,987.27 min. Besides the total system travel time, AV-zone planners may 
also want to analyze the impact of the AV zone on the AV-zone area (i.e., the area consisting of 
links 2-3, 2-4, 2-5, 3-4, 3-6, 4-3, 4-5, 4-6, 5-4, and 5-6). Table 3-8 shows that the total travel time 
within the AV-zone area decreases substantially, from 1,193.09 min to 324.69 min. The above 
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findings imply that deploying an AV zone may improve the performance of the AV-zone area as 
well as the whole system. 

Table 3-7. Perceived travel times with and without the AV zone 

Scenario O-D Perceived travel 
time of CV (min) 

Perceived travel 
time of AV (min) 

Without AV zone 
1-7 110.88 110.88 
1-8 136.04 136.04 

With AV zone 
1-7 121.74 89.84 
1-8 147.40 115.51 

 

Table 3-8. System and AV-zone area travel times with and without the AV zone 

Scenario System travel time (min) Travel time within the AV-zone 
area (min) 

Without AV zone 13,202.75 1,193.09 
With AV zone 12,987.27 324.69 

 

3.2.7 Discussions 
The mixed routing equilibrium model discussed above may become more relevant with 

the deployment of various advanced traffic control and management strategies leveraging 
connected and automated vehicle technologies. The modeling framework proposed in this 
chapter can be applied to various scenarios where vehicles adopt different routing principles at 
different sub-networks, as long as the routing strategies and the perceived travel times within the 
sub-networks are well defined. Below is a detailed discussion:   

• Routing strategy within the sub-network 
As per the operation concept iii, the control center of the sub-network is assumed to route 

vehicles to minimize the total travel time in the sub-network. In practice, the control center may 
have different routing strategies for different sub-networks, such as minimizing vehicle-miles 
traveled or traffic emissions. The proposed model can be readily extended to consider variant 
routing strategies as long as the following conditions are satisfied: 

i. The routing objective function is convex with respect to link flows within the sub-
network. 

ii. All constraints are linear. 
With the above conditions being met, the routing problem within the sub-network is a 

convex problem and can be readily embedded into the mixed routing equilibrium model. More 
specifically, let 𝜓𝜓 denote the optimality conditions of the convex problem, and then the mixed 
routing equilibrium conditions can be represented by {(1) − (14),𝒚𝒚 ∈ 𝜓𝜓}, where 𝒚𝒚 is the 
optimization variable vector. Consequently, the proposed model can be applied to multiple sub-
networks with different routing strategies directly. 
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• Perceived travel time within the sub-network 
According to Assumption i, the perceived travel times are assumed to be the minimum 

travel times between the corresponding entrances and exits of the sub-network, which implies an 
optimistic routing behavior. Other considerations can be accommodated; for example, the 
longest travel times (without loop) between the entrances and exits can be taken as the perceived 
travel times within the sub-network, which implies a pessimistic routing behavior. However, any 
consideration needs to ensure the perceived travel times to be uniquely defined. For example, the 
average travel time between an entrance and an exit appears a good proxy for the perceived 
travel time. Unfortunately, the value depends on the path flow distribution and may not be 
uniquely determined under the system-optimum routing principle. Consequently, taking it as the 
perceived travel time might lead to one driver having different perceived travel times even if the 
link flow distribution is given. In this situation, there may be an infinite number of network 
equilibrium flow patterns, which would impose a significant challenge for various planning 
applications that rely on the typically unique equilibrium flow distribution as the sole estimate or 
forecast of how traffic will react to changes in the transportation system. Additional care needs to 
be exercised to handle such situations (see, e.g., Lou et al., 2010; Ban et al., 2013; de Andrade et 
al., 2016).  

3.3 OPTIMAL DESIGN OF AUTONOMOUS VEHICLE ZONE 

Given the proposed mixed routing equilibrium model, we proceed to optimize the 
deployment plan of an AV zone over a general network. As previously stated, the problem can 
be formulated as a mixed-integer bi-level programming model. The lower-level problem is the 
mixed routing equilibrium model developed above, i.e., MRE-VI. In the upper-level problem, the 
decision variables specify where to set up the AV zone, i.e., which links are upgraded to be AV 
links. All AV links should be clustered and cordoned off by a virtual loop. When a link becomes 
an AV link, its per-lane capacity will be increased to a given value. The objective is to minimize 
the social cost, which consists of the construction cost, the total system travel time, and the loss 
of social welfare due to the loss of accessibility for some CV drivers. Mathematically, it is to 
minimize ∑ 𝑠𝑠𝑎𝑎�𝑎𝑎�∈𝐴𝐴� + ∑ 𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎)𝑣𝑣𝑎𝑎𝑎𝑎∈𝐴𝐴 + ∑ 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�)𝑣𝑣𝑎𝑎�𝑎𝑎�∈𝐴𝐴� + ∑ 𝜚𝜚𝑤𝑤𝜁𝜁𝑤𝑤𝑑𝑑𝑤𝑤,𝐶𝐶

𝑤𝑤∈𝑊𝑊 , where 𝑠𝑠𝑎𝑎�  is the 
construction cost for AV link 𝑎𝑎�; 𝜚𝜚𝑤𝑤 = 1, if the accessibility for O-D pair 𝑤𝑤 is damaged by the 
presence of the AV zone, and 0 otherwise; 𝜁𝜁𝑤𝑤 is the loss of benefit for a CV driver between O-D 
pair 𝑤𝑤 due to the loss of accessibility.  

3.3.1 Solution Procedure 
Although the problem is NP-hard, a few heuristic algorithms can be applied to solve it 

effectively, such as those in Zhang and Yang (2004), Sumalee (2004), and Hult (2006). 
However, most of these existing heuristic algorithms may not generate new feasible design plans 
efficiently, with a few exceptions (e.g., Sumalee, 2004), where complicated strategies have been 
developed to ensure the feasibility of new design plans.  

The simulated annealing algorithm or SAA is a probabilistic method proposed by 
Kirkpatrick et al. (1983) and Cerny (1985) for finding the global optimum of a given function. Its 
basic idea is to consider a neighboring solution of the current solution at each step, and apply a 
probability function to decide whether to move to the new solution or not. It stops until a 
maximum number of iterations is reached. This chapter applies SAA to solve the optimal design 
model, as an efficient procedure of finding new feasible design plans can be encapsulated in it. 
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Specifically, the AV zone starts from a random single node within the candidate area, and then, 
as per SAA, is expanded by converting a neighboring non-AV node (i.e., the preceding or 
succeeding non-AV nodes of AV nodes, see Figure 3-5) within the candidate area to an AV node 
(we refer to the new AV zone as the “neighboring AV zone”) at each iteration. To verify whether 
the neighboring AV zone is feasible, i.e., being surrounded by a closed cordon, the cutset-based 
algorithm proposed by Zhang and Yang (2004) can be applied. Specifically, a cutset of a graph is 
defined as “a minimal collection of links whose removal reduces the rank of the graph by one 
(and only one).” If the cut that separates the AV zone and non-AV zone is a cutset, then a new 
feasible design plan is generated; otherwise, another neighboring AV zone will be considered. 
Doing so leads to a better efficiency of finding new feasible plans, as the probability of a 
neighboring AV zone being a closed cordon is very high.      
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Figure 3-5. A sample AV zone 
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3.3.2 Numerical Example 
In this section, numerical examples are conducted based on a network with 81 nodes and 

288 links (see Figure 3-6). The dotted red line illustrates the candidate area where AV nodes can 

only be located. The Bureau of Public Roads (BPR) function, 𝑡𝑡𝑎𝑎 = 𝑡𝑡𝑎𝑎0 �1 + 0.15 �𝑣𝑣𝑎𝑎
𝐶𝐶𝑎𝑎
�
4
� is 

adopted as the link performance function, where 𝑡𝑡𝑎𝑎0 and 𝐶𝐶𝑎𝑎 are free-flow travel time and capacity 
of link 𝑎𝑎, respectively. Their values are randomly generated from intervals (5, 20) and (5, 100), 
respectively. In particular, as per Assumption iii, we assume that the per-lane capacity triples 
when a regular link is converted to an AV link. The O-D demand is displayed in Table 3-9. 
Without losing generality, we assume that the construction cost for AV zones is 0.  

 The optimal AV-zone design is shown in Figure 3-6. Observed from the AV zone, 
interestingly, it is unlike the best tolling cordons found by Zhang and Yang (2004) and Sumalee 
(2004), which are rounded; instead, it has a relatively long and narrow shape. Such a design can 
prevent CVs from detouring too much while providing privilege for AVs, as CVs can drive 
across the AV zone via particular AV nodes (e.g., node 2 and 13; recall that CVs are forbidden to 
use AV links instead of AV nodes). For example, path 55 → 30 → 13 → 14 → 3 → 2 → 9 →
24 → 23 → 22 → 21 → 42 → 71 is an available path for CVs from origin 55 to destination 71. 
Therefore, the AV zone design appears reasonable, as, while reducing the travel cost of AVs, it 
will not compromise the welfare of CVs too much, and may even improve it. 

Table 3-10 shows the travel costs with and without the AV zone deployed. Specifically, 
with the AV zone deployed, the system travel cost is reduced from 4,169,761 min to 3,278,468 
min. That is, the AV zone has reduced the social cost by 21.4%. As mentioned previously, AV-
zone planners may be interested in the cost within the AV-zone area. As shown in Table 3-10, 
the travel cost within the AV-zone area has been reduced by 57.5%. In addition, with the AV 
zone deployed, the travel cost outside the AV-zone area decreases by 16.8%, although it is not as 
significant as the one within the AV-zone area. For an additional illustration, Figure 3-7 plots the 
travel cost saving distribution of CVs. The travel cost savings for all CV trips are positive, which 
implies that no CV will suffer from the deployment of the AV zone. That is, such a designed AV 
zone reduces the travel cost of AVs as well as that of CVs, which is in agreement with the 
discussion in the previous paragraph. 
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Figure 3-6. Network for the AV zone design 
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Table 3-9. O-D demand 

O-D CV AV O-D CV AV O-D CV AV 
55-71 20 24 58-73 20 24 72-59 30 36 
55-72 30 36 58-74 30 36 73-55 20 24 
55-73 40 48 58-75 30 36 73-56 30 36 
55-74 20 24 59-71 20 24 73-57 40 48 
55-75 20 24 59-72 30 36 73-58 20 24 
56-71 30 36 59-73 40 48 73-59 20 24 
56-72 20 24 59-74 20 24 74-55 30 36 
56-73 20 24 59-75 20 24 74-56 20 24 
56-74 30 36 71-55 20 24 74-57 20 24 
56-75 30 36 71-56 30 36 74-58 30 36 
57-71 20 24 71-57 40 48 74-59 30 36 
57-72 30 36 71-58 20 24 75-55 20 24 
57-73 40 48 71-59 20 24 75-56 30 36 
57-74 20 24 72-55 30 36 75-57 40 48 
57-75 20 24 72-56 20 24 75-58 20 24 
58-71 30 36 72-57 20 24 75-59 20 24 
58-72 20 24 72-58 30 36 

   

 

Table 3-10. Travel costs with and without the AV zone 

Scenario System travel cost 
(min) 

Travel cost within the 
AV-zone area (min) 

Travel cost outside of 
the AV-zone area (min) 

Without AV zone 4,169,761 471,755 3,698,005 
With AV zone 3,278,468 200,688 3,077,780 
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Figure 3-7. Travel cost saving distribution of CVs 

 

CHAPTER 4   CONCLUSION 
Envisioning that AVs will be deployed in the future and government agencies can 

dedicate certain lanes and areas as AV lanes and zones to further promote the adoption of AVs as 
well as enhance the transportation network performance, this report first proposed a 
mathematical procedure to optimally deploy AV lanes considering the endogenous AV market 
penetration. Given AV lanes deployed in a general road network, the flow distributions of both 
CVs and AVs were captured by a multi-class network equilibrium model. Further, a diffusion 
model integrating the net benefit derived from deploying AV lanes was applied to forecast the 
evolution of AV market penetration over time. Based on the network equilibrium model and the 
diffusion model, a time-dependent deployment model was further formulated to optimize the 
deployment plan of AV lanes. The deployment plan indicates when, where, and how many AV 
lanes to be located. The optimization model formulated is a mathematical problem with 
complementarity constraints, and an efficient active-set algorithm was applied to solve it. 
Numerical examples were presented to validate the proposed deployment model, and to 
demonstrate the importance of designing an appropriate deployment plan. Moreover, sensitivity 
analyses for various critical parameters were conducted. Results show that (1) AV lanes should 
be deployed following a progressive process instead of a radical one; (2) AV lanes should not be 
widely deployed until the AV market penetration reaches a relative high level (e.g., more than 
20%); (3) lower additional annual cost and VOT for AVs, higher unsafety factor for using CVs, 
and higher number of annual trips have positive impact on promoting the AV adoption, while the 
variance of the per-lane capacity of AV lanes has little impact. 
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Also, this report developed a mathematical framework to optimally design AV zones. To 
this end, an innovative mixed routing equilibrium model was firstly proposed to describe the 
flow distribution of CVs and AVs with the presence of AV zones on a road network. 
Specifically, different from the traditional mixed equilibrium model where each type of player 
only obeys a particular routing principle across the whole network, AVs apply the user-optimum 
routing principle when outside of the AV zones, but follow the system-optimum routing 
principle within the AV zones. This results in a mixed routing behavior for AVs. To capture such 
a phenomenon, a dummy network was constructed to replace the original AV network where 
each dummy link represents a set of paths connecting an entrance and an exit of the AV zone; 
accordingly, the travel cost of each dummy link is in fact the travel cost of the associated 
entrance and exit pair. As a result, formulating the mixed routing equilibrium model across the 
original network is equivalent to establishing a traditional network equilibrium model on the 
revised network. With the established mixed routing equilibrium model, a mixed-integer bi-level 
programming model was proposed to obtain the optimal design plan of AV zones. The SAA 
heuristic algorithm was then adopted to solve the model efficiently. Numerical examples show 
that the social cost may be reduced substantially by an optimal deployment of AV zones. 
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APPENDIX: PROOF OF PROPOSITION 1 
This appendix includes the proof of proposition 1. For convenience, we rewrite Λ =

 {(𝒗𝒗,𝒙𝒙,𝝆𝝆�, 𝒛𝒛, 𝝉𝝉)} as follows: 

𝜟𝜟𝒙𝒙𝑤𝑤,𝑚𝑚 = 𝑬𝑬𝑤𝑤,𝑚𝑚𝒅𝒅𝑤𝑤,𝑚𝑚 ∀𝑚𝑚 ∈ 𝑀𝑀,𝑤𝑤 ∈ 𝑊𝑊 (A.1) 
𝑣𝑣𝑎𝑎 = � � 𝑥𝑥𝑎𝑎

𝑤𝑤,𝑚𝑚

𝑚𝑚∈𝑀𝑀𝑤𝑤∈𝑊𝑊

 ∀𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴 (A.2) 

𝑣𝑣𝑎𝑎� = � 𝑥𝑥𝑎𝑎�𝑤𝑤�

𝑤𝑤�∈𝑊𝑊�

 ∀𝑎𝑎� ∈ 𝐴̃𝐴 (A.3) 

𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (A.4) 
𝑥𝑥𝑎𝑎
𝑤𝑤,𝐶𝐶 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊 (A.5) 
𝑥𝑥𝑎𝑎
𝑤𝑤,𝐶𝐶 = 0 ∀𝑎𝑎 ∈ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (A.6) 
𝑥𝑥𝑎𝑎�𝑤𝑤� ≥ 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (A.7) 
𝜌𝜌�𝑖𝑖𝑤𝑤� ≥ 0 ∀𝑖𝑖 ∈ 𝑁𝑁�,𝑤𝑤� ∈ 𝑊𝑊�  (A.8) 
𝜏𝜏𝑖𝑖𝑤𝑤� ≥ 0 ∀𝑖𝑖 ∈ 𝑁𝑁�\𝑑𝑑(𝑤𝑤�),𝑤𝑤� ∈ 𝑊𝑊�  (A.9) 
𝛥̃𝛥𝒛𝒛𝑤𝑤� = 𝐸𝐸�𝑤𝑤�  ∀𝑤𝑤� ∈ 𝑊𝑊�  (A.10) 
𝑧𝑧𝑎𝑎�𝑤𝑤� ≥ 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (A.11) 

 

The optimality conditions of MRE-VI can be stated as follows: 

(A.1)-(A.11) 
𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝛾𝛾𝑎𝑎 = 0 ∀𝑎𝑎 ∈ 𝐴𝐴 (A.12) 
� 𝛽𝛽𝑎𝑎𝑤𝑤�

𝑤𝑤�∈𝑊𝑊�

 �𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�)𝑧𝑧𝑎𝑎�𝑤𝑤�

𝑎𝑎�∈𝐴𝐴�

− 𝛾𝛾𝑎𝑎 = 0 ∀𝑎𝑎 ∈ 𝐴̂𝐴 (A.13) 

−𝛾𝛾𝑎𝑎� = 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴 (A.14) 

−𝜌𝜌𝑖𝑖
𝑤𝑤,𝑚𝑚 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝑚𝑚 + 𝛾𝛾𝑎𝑎 − 𝜉𝜉𝑎𝑎
𝑤𝑤,𝑚𝑚 = 0 ∀𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴, 

𝑚𝑚 ∈ 𝑀𝑀,𝑤𝑤 ∈ 𝑊𝑊 (A.15) 

𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) + 𝑣𝑣𝑎𝑎�𝑡𝑡𝑎𝑎�′ (𝑣𝑣𝑎𝑎�) − 𝜌𝜌�𝑖𝑖𝑤𝑤� + 𝜌𝜌�𝑗𝑗𝑤𝑤� + 𝛾𝛾𝑎𝑎� − 𝜇𝜇𝑎𝑎�𝑤𝑤� = 0 ∀𝑎𝑎� = (𝑖𝑖, 𝑗𝑗),𝑤𝑤� ∈ 𝑊𝑊�  (A.16) 
�∑ 𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗

𝑤𝑤�
𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)

𝑤𝑤�
𝑘𝑘 � − ∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑎𝑎∈𝐴𝐴� ∑ 𝑥𝑥𝑎𝑎

𝑤𝑤,𝐴𝐴
𝑤𝑤∈𝑊𝑊 − 𝜃𝜃𝑜𝑜(𝑤𝑤�)

𝑤𝑤� = 0  ∀𝑤𝑤� ∈ 𝑊𝑊�  (A.17) 
−�∑ 𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗

𝑤𝑤�
𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)

𝑤𝑤�
𝑘𝑘 � + ∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑎𝑎∈𝐴𝐴� ∑ 𝑥𝑥𝑎𝑎

𝑤𝑤,𝐴𝐴
𝑤𝑤∈𝑊𝑊 − 𝜍𝜍𝑜𝑜(𝑤𝑤�)

𝑤𝑤� = 0  ∀𝑤𝑤� ∈ 𝑊𝑊�  (A.18) 

�∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�

𝑘𝑘 � − 𝜃𝜃𝑖𝑖𝑤𝑤� = 0  
∀𝑖𝑖
∈ 𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)}, 
𝑤𝑤� ∈ 𝑊𝑊�  

(A.19) 

�∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�

𝑘𝑘 � − 𝜍𝜍𝑖𝑖𝑤𝑤� = 0  
∀𝑖𝑖
∈ 𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)}, 
𝑤𝑤� ∈ 𝑊𝑊�  

(A.20) 

𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) − 𝜅𝜅𝑖𝑖𝑤𝑤� + 𝜅𝜅𝑗𝑗𝑤𝑤� − 𝛼𝛼𝑎𝑎�𝑤𝑤� = 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (A.21) 

𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴𝜉𝜉𝑎𝑎

𝑤𝑤,𝐴𝐴 = 0 ∀𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (A.22) 

𝑥𝑥𝑎𝑎
𝑤𝑤,𝐶𝐶𝜉𝜉𝑎𝑎

𝑤𝑤,𝐶𝐶 = 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊 (A.23) 
𝑥𝑥𝑎𝑎�𝑤𝑤�𝜇𝜇𝑎𝑎�𝑤𝑤� = 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (A.24) 
𝜌𝜌�𝑖𝑖𝑤𝑤�𝜃𝜃𝑖𝑖𝑤𝑤� = 0 ∀𝑖𝑖 ∈ 𝑁𝑁�,𝑤𝑤� ∈ 𝑊𝑊�  (A.25) 
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𝜏𝜏𝑖𝑖𝑤𝑤�𝜍𝜍𝑖𝑖𝑤𝑤� = 0 ∀𝑖𝑖 ∈ 𝑁𝑁�\𝑑𝑑(𝑤𝑤�), 
𝑤𝑤� ∈ 𝑊𝑊�  (A.26) 

𝑧𝑧𝑎𝑎�𝑤𝑤�𝛼𝛼𝑎𝑎�𝑤𝑤� = 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (A.27) 
𝜉𝜉𝑎𝑎
𝑤𝑤,𝐴𝐴 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴 ∪ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊 (A.28) 
𝜉𝜉𝑎𝑎
𝑤𝑤,𝐶𝐶 ≥ 0 ∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊 (A.29) 
𝜇𝜇𝑎𝑎�𝑤𝑤� ≥ 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (A.30) 
𝜃𝜃𝑖𝑖𝑤𝑤� ≥ 0 ∀𝑤𝑤� ∈ 𝑊𝑊�  (A.31) 

𝜍𝜍𝑖𝑖𝑤𝑤� ≥ 0 ∀𝑖𝑖 ∈ 𝑁𝑁�\𝑑𝑑(𝑤𝑤�),  
𝑤𝑤� ∈ 𝑊𝑊�  (A.32) 

𝛼𝛼𝑎𝑎�𝑤𝑤� ≥ 0 ∀𝑎𝑎� ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�  (A.33) 
where 𝜌𝜌𝑖𝑖

𝑤𝑤,𝑚𝑚, 𝛾𝛾𝑎𝑎, 𝛾𝛾𝑎𝑎� , 𝜉𝜉𝑎𝑎
𝑤𝑤,𝐴𝐴, 𝜇𝜇𝑎𝑎�𝑤𝑤� , 𝜃𝜃𝑖𝑖𝑤𝑤� , 𝜍𝜍𝑖𝑖𝑤𝑤� , 𝜅𝜅𝑖𝑖𝑤𝑤� , and 𝛼𝛼𝑎𝑎�𝑤𝑤�  are the multipliers of constraints (A.1)-(A.4), 

and (A.7)-(A.11); 𝜉𝜉𝑎𝑎
𝑤𝑤,𝐶𝐶 is the multiplier of constraints (A.5) and (A.6). 

From (A.12), (A.15), and (A.22), we have: 

�𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝐴𝐴 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝐴𝐴�𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴 = 0,∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊      (A.34) 

From (A.12), (A.15), and (A.28), we have: 

𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝐴𝐴 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝐴𝐴 ≥ 0,∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊        (A.35) 

From (A.12), (A.15), and (A.23), we have: 

�𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝐶𝐶 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝐶𝐶�𝑥𝑥𝑎𝑎
𝑤𝑤,𝐶𝐶 = 0,∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊      (A.36) 

From (A.12), (A.15), and (A.29), we have: 

𝑡𝑡𝑎𝑎(𝑣𝑣𝑎𝑎) − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝐶𝐶 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝐶𝐶 ≥ 0,∀𝑎𝑎 ∈ 𝐴𝐴,𝑤𝑤 ∈ 𝑊𝑊       (A.37) 

From (A.13), (A.15), and (A.22), we have: 

�∑ 𝛽𝛽𝑎𝑎𝑤𝑤� ∑ 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�)𝑧𝑧𝑎𝑎�𝑤𝑤�𝑎𝑎∈𝐴𝐴𝑤𝑤�∈𝑊𝑊� − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝐴𝐴 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝐴𝐴�𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴 = 0,∀𝑎𝑎 ∈ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊   (A.38) 

From (A.13), (A.15), and (A.28), we have: 

∑ 𝛽𝛽𝑎𝑎𝑤𝑤� ∑ 𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�)𝑧𝑧𝑎𝑎�𝑤𝑤�𝑎𝑎∈𝐴𝐴𝑤𝑤�∈𝑊𝑊� − 𝜌𝜌𝑖𝑖
𝑤𝑤,𝐴𝐴 + 𝜌𝜌𝑗𝑗

𝑤𝑤,𝐴𝐴 ≥ 0,∀𝑎𝑎 ∈ 𝐴̂𝐴,𝑤𝑤 ∈ 𝑊𝑊    (A.39) 

From (A.14), (A.16), and (A.24), we have: 

�𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) + 𝑣𝑣𝑎𝑎�𝑡𝑡𝑎𝑎�′ (𝑣𝑣𝑎𝑎�) − 𝜌𝜌�𝑖𝑖𝑤𝑤� + 𝜌𝜌�𝑗𝑗𝑤𝑤� �𝑥𝑥𝑎𝑎�𝑤𝑤� = 0,∀𝑎𝑎� = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�     (A.40) 

From (A.14), (A.16), and (A.30), we have: 

𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) + 𝑣𝑣𝑎𝑎�𝑡𝑡𝑎𝑎�′ (𝑣𝑣𝑎𝑎�) − 𝜌𝜌�𝑖𝑖𝑤𝑤� + 𝜌𝜌�𝑗𝑗𝑤𝑤� ≥ 0,∀𝑎𝑎� = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴̃𝐴,𝑤𝑤� ∈ 𝑊𝑊�     (A.41) 

From (A.17) and (A.31), we have: 
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�∑ 𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗
𝑤𝑤�

𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)
𝑤𝑤�

𝑘𝑘 � − ∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑎𝑎∈𝐴𝐴� ∑ 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴

𝑤𝑤∈𝑊𝑊 = 𝜃𝜃𝑜𝑜(𝑤𝑤�)
𝑤𝑤� ≥ 0,∀𝑤𝑤� ∈ 𝑊𝑊�     (A.42) 

From (A.18) and (A.32), we have: 

−�∑ 𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗
𝑤𝑤�

𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)
𝑤𝑤�

𝑘𝑘 � + ∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑎𝑎∈𝐴𝐴� ∑ 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴

𝑤𝑤∈𝑊𝑊 = 𝜍𝜍𝑜𝑜(𝑤𝑤�)
𝑤𝑤� ≥ 0,∀𝑤𝑤� ∈ 𝑊𝑊�    (A.43) 

We know that (A.42) and (A.43) can hold only if 𝜃𝜃𝑜𝑜(𝑤𝑤�)
𝑤𝑤� = 0, 𝜍𝜍𝑜𝑜(𝑤𝑤�)

𝑤𝑤� = 0,∀𝑤𝑤� ∈ 𝑊𝑊�  and  

�∑ 𝑥𝑥𝑜𝑜(𝑤𝑤�),𝑗𝑗
𝑤𝑤�

𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑜𝑜(𝑤𝑤�)
𝑤𝑤�

𝑘𝑘 � = ∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑎𝑎∈𝐴𝐴� ∑ 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴

𝑤𝑤∈𝑊𝑊 = 0,∀𝑤𝑤� ∈ 𝑊𝑊�       (A.44) 
From (A.19) and (A.31), we have: 

�∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�

𝑘𝑘 � = 𝜃𝜃𝑖𝑖𝑤𝑤� ≥ 0,∀𝑖𝑖 ∈ 𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)},𝑤𝑤� ∈ 𝑊𝑊�      (A.45) 
From (A.20) and (A.32), we have: 

�∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�

𝑘𝑘 � = 𝜃𝜃𝑖𝑖𝑤𝑤� ≥ 0,∀𝑖𝑖 ∈ 𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)},𝑤𝑤� ∈ 𝑊𝑊�      (A.46) 
Similarly, (A.45) and (A.46) can hold only if: 𝜃𝜃𝑖𝑖𝑤𝑤� = 0, 𝜍𝜍𝑖𝑖𝑤𝑤� = 0,∀∈ 𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)},𝑤𝑤� ∈

𝑊𝑊�  and 

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗𝑤𝑤�𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑖𝑖
𝑤𝑤�

𝑘𝑘 = 0,∀𝑖𝑖 ∈ 𝑁𝑁�\{𝑜𝑜(𝑤𝑤�),𝑑𝑑(𝑤𝑤�)},𝑤𝑤� ∈ 𝑊𝑊�        (A.47) 
Further, summating (A.44) and (A.47), we can obtain: 

∑ 𝑥𝑥𝑑𝑑(𝑤𝑤�),𝑗𝑗
𝑤𝑤�

𝑗𝑗 − ∑ 𝑥𝑥𝑘𝑘,𝑑𝑑(𝑤𝑤�)
𝑤𝑤�

𝑘𝑘 = −∑ 𝛽𝛽𝑎𝑎𝑤𝑤�𝑎𝑎∈𝐴𝐴� ∑ 𝑥𝑥𝑎𝑎
𝑤𝑤,𝐴𝐴

𝑤𝑤∈𝑊𝑊        (A.48) 
From (A.21) and (A.27), we have: 

[𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) − 𝜅𝜅𝑖𝑖𝑤𝑤� + 𝜅𝜅𝑗𝑗𝑤𝑤� ]𝑧𝑧𝑎𝑎�𝑤𝑤� = 0          (A.49) 

From (A.21) and (A.33), we have: 

𝑡𝑡𝑎𝑎�(𝑣𝑣𝑎𝑎�) − 𝜅𝜅𝑖𝑖𝑤𝑤� + 𝜅𝜅𝑗𝑗𝑤𝑤� ≥ 0         (A.50) 

Obviously, (A.1)-(A.11), (A.34)-(A.41), (A.44), and (A.47)-(A.50) are equivalent to the 
MRE conditions (3-1)-(3-21). 

Note that the optimality condition of MRE-VI contains additional constraints, such as, 
(A.8), (A.9), (A.25), and (A.26), but this will not affect the equivalence. 
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