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ABSTRACT

This report advocates the need for infrastructure planning to adapt to and further promote
the deployment of autonomous vehicle (AV) technology. It is envisioned that in the future
government agencies will dedicate certain lanes and areas of road networks to AVs only to
facilitate the formulation of vehicle platoons to improve throughput and hopefully improve the
performance of the whole network.

This report consists of two applications, AV lanes and AV zones. A mathematical
approach is first developed to optimize a time-dependent deployment plan of AV lanes on a
transportation network with heterogeneous traffic stream consisting of both conventional
vehicles (CVs) and AVs, so as to minimize the social cost and promote the adoption of AVs. The
deployment plan indicates when, where, and how many AV lanes to be located. The report also
presents a mathematical framework for the optimal design of AV zones in a general network.
With the presence of AV zones, AVs may apply different routing principles outside of and
within the AV zones. A novel network equilibrium model is thus firstly proposed to capture such
mixed-routing behaviors. A mixed-integer bi-level programming model is then formulated to
optimize the deployment plan of AV zones. Numerical examples are presented to demonstrate
the performance of the proposed models.

Keywords: autonomous vehicle; autonomous-vehicle lane; autonomous-vehicle zone; mixed
routing equilibrium; market penetration; deployment plan
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EXECUTIVE SUMMARY

The objectives of this project are to (a) develop a mathematical approach to optimize a

time-dependent deployment plan of autonomous vehicle (AV) lanes, and (b) present a
mathematical framework for the optimal design of AV zones in a general network.

For the first objective, Section 2.1 presents a multi-class network equilibrium model to
describe the flow distributions of both conventional vehicles (CVs) and AVs, given the
presence of AV lanes in the network. Considering that the net benefit (e.g., reduced travel
cost) derived from the deployment of AV lanes will further promote the AV adoption,
Section 2.2 applies a diffusion model to forecast the evolution of AV market penetration.
With the proposed equilibrium model and diffusion model, a time-dependent deployment
model is then formulated in Section 2.3, which can be solved by an efficient solution
algorithm.

For the second objective, Section 3.1 illustrates the operational concept of AV zones and
basic assumptions for the proposed models. Section 3.2 formulates the network
equilibrium model and proposes its solution algorithm. Lastly, Section 3.3 optimizes the
design of AV zones.
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CHAPTER 1 BACKGROUND

Autonomous vehicles (AVs) are expected to offer extraordinary improvements to both
the safety and efficiency of existing roadways and mobility systems. Although it will be many
years before a widespread adoption of AV technology, recent developments suggest that they are
fast-approaching. Google’s AVs had driven more than 2,000,000 miles on public roads by June
2016 (Google Self-Driving Car Project, 2016). More recently, nuTonomy, a software company,
has launched the world’s first self-driving taxi in Singapore (nuTonomy, 2016). Many car
manufactures, such as VVolvo and Audi, are currently designing and testing their prototype AVs.
In the United States, states such as Nevada, Florida, California, Michigan, and Washington D.C.
have legalized AVs for testing on public roads. While thus far the development of AV
technology appears to be primarily driven by the private sector, it is critical for government
agencies to change various policies and practices to adapt to and further promote the deployment
of the technology.

In this project, we advocate the need for infrastructure adaptation planning for AVs.
Before manual driving can be completely phased out (or criminalized, as some have predicted),
the traffic stream on a road network will still be heterogeneous, with both conventional vehicles
(CVs) and AVs. We envision that government agencies can initially identify critical locations to
implement various AV mobility applications. For example, a “bottleneck manager” can be
implemented at a recurrent freeway bottleneck. When approaching, AVs send requests via
vehicle-to-infrastructure wireless commutations to the “bottleneck manager,” which will
prioritize the requests and optimize their trajectories to ensure timely passage while preventing
the bottleneck from being activated. To leverage the growing adoption of AVs, government
agencies may later dedicate certain traffic lanes, highway segments or even areas of networks
exclusively to AVs to facilitate the formulation of vehicle platoons to further improve
throughput. Subsequently implemented are innovative control strategies that aim to achieve
system optimum in those areas. The dedicated AV areas will expand gradually as the level of the
market penetration of AVs increases and eventually support a fully connected and automated
mobility in the whole system. Similar ideas have been suggested in the literature. For example,
as current managed lanes are equipped with advanced communication and data transfer systems,
researchers have suggested converting some of them into dedicated lanes for AVs to reduce
congestion and improve the safety of passengers (Davis, 2014; Levin and Boyles, 2016a,b). To
help boost the market penetration of AVs, Chen et al. (2016) proposed a time-dependent model
to optimally deploy AV lanes on a general network consisting of both CVs and AVs. Godsmark
and Kakkar (2014) pointed out that the presence of AV areas can maximize benefits brought by
AVs as rapidly as possible, as well as promote the AV adoption.

This project first attempts to propose a general mathematical model to help government
agencies optimally deploy AV lanes in a way to minimize the social cost. The decision-making
process in such a planning practice possesses a structure of the leader-follower or Stackelberg
game, in which government agencies serve as the leader and travelers are the follower. In order
for government agencies to optimize those planning decisions, travelers’ spontaneous responses
need to be proactively considered in the optimization framework. This type of Stackelberg games
have been formulated as mathematical programs with equilibrium constraints for many
transportation applications (see, e.g., Wu et al., 2011, 2012; Yin et al., 2008; He et al., 2013a,
2015; Zhang et al., 2014; Chen et al., 2016). More specifically, given AV lanes deployed, we

9
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assume that CVs and AVs follow the Wardrop equilibrium principle to choose their routes that
minimize their individual travel costs (Wardrop, 1952), and the resulting flow distribution is in a
multi-class network equilibrium (e.g., Yang and Meng, 2001; Wu et al., 2006). Furthermore,
since the net benefit (e.g., reduced travel cost for AVs) derived from deploying AV lanes plays
an important role in promoting the AV adoption, we apply a diffusion model to forecast the
evolution of AV market penetration. Based on the network equilibrium model and diffusion
model, we proposed a time-dependent deployment model to optimize the location design of AV
lanes on a general transportation network. The AV market penetration follows a progressive
process instead of a radical one, thus the AV lanes should also be deployed in a progressive
fashion. More specifically, the optimized deployment plan will not only specify where and how
many AV lanes to be deployed, but also when to deploy them.

In addition, this project deals with a particular issue in the infrastructure adaptation
planning process and aims to present a mathematical framework for the optimal design of AV
zones in a general network. With only AVs being allowed to enter, an AV zone consists of a set
of links that are tailored to AVs. Note that in order not to compromise CVs’ accessibility to
various locations, the nodes within the zone in particular, the AV zone can be designed to consist
of only urban expressways or arterial roads, excluding minor streets. It is assumed that within the
zone, AVs cannot choose their routes. Instead, they report their exits and are then guided by a
central controller to achieve the system optimum flow distribution in the zone. AV zones will
enable full utilization of the AV technology within the zones to hopefully improve the
performance of the whole network. These zones can help reduce travel times for AVs and further
nurture the AV market. However, the existence of AV zones likely increases travel times for
some CVs. Therefore, government agencies will need to make a tradeoff between these pros and
cons in designing AV zones. The optimal design will depend on the market penetration of AVs,
network topology and link characteristics, and more importantly, the route choices of both CVs
and AVs in the network.

Similar to the deployment problem of AV lanes, optimal design of AV zones possesses a
structure of leader-follower game, in which government agencies serve as the leader while CVs
and AVs are the followers. Given a design of the AV zone, we firstly develop an innovative user
equilibrium model we call the “mixed routing equilibrium model” to describe the flow
distribution of AVs and CVs across the network. The novelty of the proposed model lies in the
aspect that some paths consist of both links outside of and within the AV zones; AVs follow the
user-optimum routing principle in the former and the system-optimum routing principle in the
latter. This new equilibrium model is most relevant to mixed equilibrium models in the literature,
e.g., Haurie and Marcotte (1985), Harker (1988), Yang and Zhang (2008), Zhang et al. (2008),
and He et al. (2013Db), where both the user-optimum and system-optimum route choice behaviors
are considered. In all these previous models, all types of players share the same network, and
each type of player applies a particular routing principle to traverse the whole network. In
contrast, in our model, AVs and CVs may face different network topologies (recall that CVs are
not allowed to enter AV zones) and, more importantly, AVs may apply different routing
principles at different sub-networks. Mixed routing behaviors may become more relevant with
the deployment of automated and connected vehicles. Capturing them in the network equilibrium
framework is very challenging, which actually constitutes one of the major contributions of this
project.

10
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Given the proposed mixed routing equilibrium model, we proceed to optimize the
deployment plan of AV zones over a general network. The design problem is formulated as a
mixed-integer bi-level programing model that is very difficult to solve. The problem appears to
have a similar structure as the cordon design problem for cordon congestion pricing (see, e.g.,
Zhang and Yang, 2004 and Sumalee, 2004), which was solved previously using genetic-
algorithm-based heuristics, such as the cutset-based approach (Zhang and Yang, 2004), the
branch-tree approach (Sumalee, 2004), and the Delaunay triangulation approach (Hult, 2006).
However, most of the above algorithms have low efficiency on generating new feasible design
plans. In this report, we adopt a simulated annealing algorithm or SAA (Kirkpatrick et al., 1983;
Cerny, 1985) to solve the AV zone design problem, since a simple but efficient plan-updating
strategy can be tailored for SAA in order to generate new feasible design plans efficiently.

For the remainder, Chapter 2 develops a mathematical approach to optimize a time-
dependent deployment plan of AV lanes on a transportation network with heterogeneous traffic
stream consisting of both conventional vehicles CVs and AVs, so as to minimize the social cost
and promote the adoption of AVs. Chapter 3 presents a mathematical framework for the optimal
design of AV zones in a general network. Concluding remarks are provided in Chapter 4.

CHAPTER 2 OPTIMAL DEPLOYMENT OF AUTONOMOUS VEHICLE

LANES WITH ENDOGENOUS MARKET PENETRATION

In this chapter, Section 2.1 applies the multi-class network equilibrium model to describe
the flow distributions of both CVs and AVs. Section 2.2 proposes the AV diffusion model to
forecast the market penetration of AVs. Section 2.3 presents the mathematical program to
optimize the AV-lane deployment plan, followed by numerical examples in Section 2.4.

Below are some notations used throughout the chapter.

11
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Sets

K Set of paired links

N Set of nodes

A Set of links

A Set of AV links

M Set of travel modes: mode 1 denotes CVs, and mode 2 denotes AVs
w Set of origin-destination (OD) pairs

pwm ?et of paths for travel mode m € M between OD pair w € W at year T €

pwm Set of utilized paths for travel mode m € M between OD pairw € W at
T yeart €T

T Set of years

Parameters

m Index of travel mode, m € M

w Index of OD pair, w € W

p Index of path, p € ™

avr Potential AV market size for OD pairw € W

Yim Value of time (VOT) for drivers of travel mode m € M

o Interest rate

n A factor converting social cost from an hourly basis to a yearly basis

T Index of yeart € T

'S Unsafety factor for using CV

. If link a belongs to the kth link pair, and it is an AV link, then 8% = 1; If
Oa link a belongs to the kth link pair, and it is not an AV link, then 8% =
—1; otherwise, 8% = 0

Variables
daym™ Demand of travel mode m € M between OD pairw € W atyeart € T
v Flow of travel mode m € M on link a € A between OD pairw € W at
at yeart €T
Var Aggregate flowon linka € Aatyeart € T
k The number of lanes on the kth link pair that are converted into AV lanes
Ve atyeart €T
cwm Equilibrium travel time for mode m € M between OD pair w € W at
T yeart €T

2.1 MULTI-CLASS NETWORK EQUILIBRIUM MODEL

Assume that the entire planning horizon is divided into |T| years. Let G(N, A) denote a
general transportation network, where N and A are the sets of nodes and links in the network
respectively. Let A represent the set of AV links in the network. Note that any link including AV
lanes can be divided into one regular link and one AV link without affecting the network
performance. For example, Figure 2-1(a) shows a simple network topology. If we consider link 1
and link 4 as the candidate links where AV lanes can be deployed, then its network topology can

12
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be revised as the one in Figure 2-1(b). That is, A = {1,2,3,4,5,6,7} and A = {6,7}. We further
define K as the set of these pairs of links. Specifically, in Figure 2-1(b), K = {(1,6), (4,7)}. We
represent a link either as a € A or its starting and ending nodes, i.e., a = (i,j) € A. Let M =
{1,2} denote the set of travel modes, in which mode 1 corresponds to CV and mode 2
corresponds to AV. The set of OD pairs is denoted as W, and o(w) and d(w) define the origin
and destination of OD pair w € W. The travel time of link a € A at year t € I' is denoted as
talr(vm), which is specified by the link performance function, e.g., in a form of the following

function:

(v Ba
talr(vai) =t [1 + a, (XTT) l
a

where ¢tJ is the free-flow travel time of link a; A}, is the capacity of link a at year 7 € T; v, , is
the link flow at year € T, and &, and S, are two positive parameters.

e
Regular link

—— >
AV link

(b) Revised network topology

Figure 2-1. A simple network example

The flow distributions of both CVs and AVs at any year t € T, can be described by the
following network equilibrium model:

szv’m — Ew,mdrﬂm VweW,meM (2-1)

13
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xaT >0 VaeAweW (2-2)
xm =0 Va € A\A,w e W (2-3)
Xpp =0 VvaeEAwew (2-4)
Z 2 Xaz Va €A (2-5)
meM wew
tar(Vaz) + i =P —Tag =0  Va€AwEW,meM (2-6)
Moy Xgr =0 Va€AweW (2-7)
Moy Xgr =0 Va € A\AweW (2-8)
oz =0 VaEAwEW (2-9)
Moy = Va e A\Adwew (2-10)

where A is the node-link incidence matrix associated with a given network, and EV'"™,w €

W, m € M is a vector with a length of |N|. The vector consists of two non-zero components: one
has a value of 1 corresponding to origin o(w) and the other has a value of —1 corresponding to
destination s(w). x.7" is the Irnk flow of mode m € M between O-D pairw € W atyeart € T,
and v, , is the aggregatron of x™ over all travel modes and OD pairs. Vectors p and n are
auxiliary variables, and p represents the node potentials.

In the above, constraint (2-1) ensures the flow conservation; constraints (2-2) and (2-3)
are nonnegative constraints on link flows; constraint (2-4) ensures that only AVs can use AV
links; constraint (2-5) aggregates link flows across all travel modes and OD pairs; constraints (2-
6)-(2-10) ensure that all utilized paths of the same travel mode between each OD pair share the
same travel cost ps(w)‘r Po(my+» While those unutilized ones possess travel cost larger than or

equal to pge - = Py

In addition, finding a solution to the system of equilibrium conditions is equivalent to
solving the following mathematical problem (NE):

NE:

m1n 2f tq(x)dx

a€eA
s.t. (2-1)-(2-5)

The equivalence can be established by comparing the KKT conditions of NE with the
defined network equilibrium conditions (2-1)-(2-10).

2.2 AV DIFFUSION MODEL

Diffusion models have been widely applied to forecast how a new product or idea will be
adopted over time. For example, Yang and Meng (2001) proposed a modified logistic growth
model to investigate the adoption rate of advanced traveler information systems. Park et al.

14
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(2011) proposed a diffusion model to simulate the market penetration of hydrogen fuel cell
vehicles. Lavasani et al. (2016) developed a market penetration model to forecast the AV
technology adoption by considering the price difference between AV and CV, as well as the
economic wealth of the population. We here adopt the diffusion model proposed by Yang and
Meng (2001). Specifically, the adoption of AVs at a given year depends on the adoption and the
net benefit gained at the previous year. That is,

dW,Z
Ay = & + g(¢r)dy” (1 - d7> vwew,teT\{IT)}  (2-11)

where dV* is the potential AV market size for OD pair w € W. Note that, the potential market
size of a new product is predicted exogenously in many diffusion models (e.g., Lavasani et al.,
2016; Park et al, 2011; Massiani and Gohs, 2015), with a few exception (Yang and Meng, 2001,
Huang and Li, 2007). The latter ones relate the potential market penetration level to the benefit
brought by the new product. Doing so, however, will complicate the AV-lane deployment model
(proposed in Section 4), and even make it intractable. Therefore, in this chapter, we adopt a fixed
potential AV market size for each OD pair. g(¢y) is the intrinsic variable growth coefficient for
OD pair w € W, which is defined as follows:

g(pY) = aeb(#¥-") VweW,T€T (2-12)

where @ and b are two parameters (& > 0; b = 0), ¢" is the OD specific benefit threshold for
OD pair w € W, and ¢y is the net benefit gained for OD pairw € W atyeart € T. ¢ is
defined as follows:

¥ = [ + QC =07 - LY - Y, YweW,TeT (2-13)

where y,, is the value of travel time for travel mode m, ¢ is a nonnegative unsafety factor for
using CVs compared with using AVs, L¥ is the number of trips between OD pair w € W at year
T € T, which could be the average annual trip number obtained from household travel survey, Y,
is the additional annual cost for using AVs at year T € T, and €)™ is the equilibrium travel time
of mode m € M between OD pairw € W atyeart €T, i.e.,

CE™ = Py — P« vmeMweW,T€T (2-14)

where p can be obtained by solving NE.

Without loss of generality, we assume that the yearly travel demand between each OD
pair remains the same during the entire planning horizon. That is,

2 d¢™ = 2 dy ™ vweW,T€T (2-15)

meM meM

15
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2.3 AV-LANE LOCATION PROBLEM

In this section, we will investigate how to optimally locate AV lanes to minimize the
social cost with the consideration of the market penetration of AVs. AV lanes can only be
located to a given set of candidate links, to reflect possible restrictions imposed in field
applications. The optimal deployment problem of AV lanes will be formulated as a bi-level
model. The lower-level problem is the multi-class network equilibrium defined in Egs. (2-1)-(2-
10), while the upper-level one investigates when, where and how many AV lanes should be
deployed.

2.3.1 Model Formulation

Let 8% denote the pair-link incidence. If link a belongs to the kth pair of links, and it is
an AV link, then 8% = 1; if it is a regular link, then 8% = —1; otherwise, 8% = 0. Further, let y¥
be an integer variable, representing the number of lanes on the kth pair of links that are

converted from regular lanes to AV lanes at year t. Then, the AV-lane location problem (AVLL)
can be formulated as follows:

AVLL:

(01 + Qa2 e +y,dy?c?)
min Z Z Z n

x,dn.py (1 + O—)‘L’—l
TET WwEW | meM
s.t. (2-1)-(2-15)
T
A=A+ ¢, z ea,kzy}‘ Va€ATET (2-16)
keEK j=1

IT|
Ay +¢, Z Bu 2 Ve > g Va e A (2-17)

k€EK j=1
yke{01,..,1} VkeK,T€T (2-18)

where ¢ is the discount rate per year, n is a factor converting social cost from an hourly basis to
a yearly basis, u, is a given parameter, representing the minimum capacity required for link a, I,
is a given integer, representing the maximum number of AV lanes that can be deployed on the
kth pair of links each year, A, is the initial capacity of link a, ¢, is the per-lane capacity of link
a,thus Ay + €4+ Yrek Oak X j=1Yk,j represents the capacity of link a at year 7. It should be
noted that the increase of AV-link capacity and the decrease of the paired regular-link capacity is
not symmetric, as their per-lane capacities are not the same. As mentioned before, the per-lane
capacity can become tripled when it is converted from a regular lane to an AV lane due to the
benefits from vehicle-to-vehicle communication.

In the above, the objective function is to minimize the total social cost, consisting of the
costs of both CVs and AVs; constraint (2-16) calculates the capacity of link a at year t;
constraint (2-17) ensures that the capacity of link a should be no less than a required minimum
16
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capacity. For example, in order to maintain the accessibility of the network, there must be at least
one regular lane for all the regular links, otherwise, CVs of some OD pairs cannot finish their
trips. Constraint (2-18) implies that y¥ must be an integer number, and its upper bound is .

The above model can be readily extended to consider the construction cost for the AV-

S.

lane deployment and the government subsidy, via adding a term ZT# — Zrﬁ to the

objective function, where [T, and S, are the construction cost and the government subsidy at year
T respectively.

2.3.2 Solution Algorithm

The AVLL problem can be generally categorized as a discrete network design problem
(DNDP). And those solution algorithms proposed in the literature for DNDP can be employed to
solve AVLL, e.g., branch-and-bound technique (LeBlanc, 1975), support-function based method
(Gao et al., 2005), active-set algorithm (Zhang et al., 2009), system optimal-relaxation based
method and user equilibrium-reduction based method (Wang et al., 2013). Here, AVLL is in
form of a mathematical program with complementarity constraints (see, e.g., Luo et al., 1996),
we employ the active-set algorithm developed by Zhang et al. (2009) to solve it. The basic idea
IS to solve a sequence of restricted nonlinear problems to obtain a strongly stationary solution to
the original AVLL.

Let &, denote the smallest integer number such that I, < 2% — 1, then constraint (2-18)
can be represented as y;f = Zf;’;lyrk'w 2@-1 where y*7 is a binary variable for @ € {1, ..., &} }.

For a particular deployment plan, we define |T'| pairs of active sets, Q,, =
{(k,@):yf™ = 0} and Q. ; = {(k,@): ™ = 1}, vt € T. These two sets should be “complete”,
e, QoU Q= {(k,w)} QN y =0, VT €T. Given some deployment plan
Uzer (24,0, Q1) the restricted AVLL (RAVLL) problem can be formulated as below:

RAVLL:

(0n +dr e +yad?c?)
Y[ _
xdnpy 1+o0)—1

TET WEW | meM

s.t. (2-1)-(2-15)

AL =R, +c,- z » z z yke VaeATET (2-19)

A +¢,- Z B 2 Z VT > g VaeA (2-20)
kEK j=1 @
yE® =0 V(k,w) €Q,0T€ET (2-21)

17



- Infrastructure Adaptation Planning for Autonomous Vehicles

yI]_C,‘lD' = 1 V(k, ZD') € Q‘L',llT € T (2'22)

Although RAVLL is another mathematical problem with complementarity constraints, its
optimal solution can be easily obtained by solving the NE problem, with the deployment plan
fixed. Below is the procedure of the active-set algorithm. The convergence of the algorithm has
been proved by Zhang et al. (2009), thus is not presented here.

Step 0: Set € = 1 and solve NE with an initial deployment plan U ¢y (Q%,O, Q%,l) for each year
T€eT.

Step 1: Construct a solution (x,d,n, p, ¥)T to RAVLL based on the optimal solutions derived
from solving NE with Uzer (Q€, Q% ;). Then, solve RAVLL to determine A5, . and
Ur.w¢ the Lagrangian multipliers associated with constraints (2-21) and (2-22). Set

((h+c)d¥"'1C¥"1+VszW’ZC¥V'2)l

TT® = Yrer Zwew lZmEM n (1+0)7-1

Step 2: Set Q = —oo and adjust the active sets by performing the following steps:

a) Let (2, h) solve the following knapsack problem:

: € €
min Z Z Ak,w,‘rzk,w,r - Z Z ﬂk,w,‘chk,w,r

T€T (k,@)ENs, €T (k,m)ENs,
s.t.
A ~ w-1 w—1 w-1
Bt )| D 0027+ D Oapti2 = ) a2
T€T | (k,@)ENs (k,m)eQs (k,@)eqQs
> U, Va€eA
€ €
Ak,w,rzk,w,‘c - Z Z :uk,w,rhk,w,‘c = Q
T€T (k,w)EQS €T (k,w)eEQ;

Zk,w,‘[r hk,w,‘[ € {0,1}

If its optimal objective value is zero, stop and the current solution is optimal.
Otherwise, go to Step 2b.

b) Set:
I. D= Z‘L‘ET Z(k,w)eﬂ%o Ai,w,‘cz’\k,w,‘r - Z‘L‘EF Z(k,m)eﬂ%l .uli,w,‘rhk,w,‘[:
ii. K-\2‘[,0 = (Qg,o - {(k' ZD') € Q‘?O:Z’\k,w,‘[ = 1}) U {(k' ZD') € 'Qg,l: iik,m,‘[ =
1}, vVt EeT,
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i, Q=005 —{(k®) € Q1 My wr =1} U{(k, @) € Qi 21 pr =
1}, vteT.

c) Solve NE with a deployment plan § compatible with U ¢y (ﬁf,o, ﬁm). If its social
cost TT < TT¥€, go to Step 2d since the location plan U ¢y (ﬁw, ﬁm) leads to a
decrease in the social cost. Otherwise, set Q = D + &, where € > 0 is sufficiently
small, and return to Step 2a.

d) SetQeht =00, Q' =0,,, VT ET,ande = €+ 1. Go to Step 1.

2.4 NUMERICAL EXAMPLES

2.4.1 Basic Settings

The numerical examples are conducted based on the south Florida network as shown in
Figure 2-2, which consists of 232 regular links, 44 AV links, 82 nodes and 83 OD pairs. The OD
demand is given in Table 2-1 and link characteristics are omitted due to space limitation. Table
2-2 shows the paired links, in which each AV link is paired with one regular link. For example,
link 233 is an AV link, and link 15 is the paired regular link. They have the same link
characteristics except the initial number of lanes and per-lane capacity. Specifically, the initial
capacities of AV links are set as 0, meaning that without deploying AV lanes, the AV links are
only virtual links, which can not be utilized.

We assume that the initial adoption rate of AVs for each OD pair is 2%, and the potential
market size is 75% (Lavasani et al., 2016). The default model parameters include: (1) discount
rate: o = 0.03; (2) converting factor: n = 365 X 24 = 8,760 (hour/year); (3) per-lane capacity
of a regular link: ¢, Va € A\A4, equal to the link capacity divided by the number of lanes on that
link; (4) per-lane capacity of an AV link: ¢,, Va € 4, equal to 2.5 times the per-lane capacity of
the paired regular link; (5) planning horizon: |T| = 40; (6) the number of trips: L¥ = 720
(trips/year), Vw € W, 1 € T; (7) additional annual cost for using AVs: Y; = 1,000 ($/year), V1 €
I'; (8) OD specific benefit threshold: ¢* = 1,000 ($), Yw € W; (9) VOT:y; = 0.5and y, = 0.5
($/min); (10) unsafety factor for using CV: ¢ = 0.1 ($/min); (11) two parameters in Eq. (11):

a = 0.3(1/year), b = 0.00005(year/$); (12) minimum link capacity: u, = ¢, Va €
A\A,and u, = 0,Va € A4; (13) maximum number of AV lanes can be deployed each year: I;, =
3,Vk € K. It should be noted that all the above values are chosen for illustrative purpose.

19



Infrastructure Adaptation Planning for Autonomous Vehicles

®
.
50 30 )
®
51 31 G)
O,
D ¢
o bbb
L L1
<o o
P @
Go) @
o & ]
I 1
) D & ®
& @
D), G2) ®
A O
41 (60) (7) @)
b oo
@)
D),
() 13) 73 @) 21
50 48 74 )
@, ()
O—& e‘@'@
47 @
79 (23)
D —— General Link
AV Link
@ ®

@)

Figure 2-2. South Florida network
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Table 2-1. OD demand of south Florida network

oD Demand OD Demand OD Demand OD Demand
1-36 743.56 28-57 743.56 50-19 793.76 64-30 815.30
1-57 860.80 28-63 863.41 50-59 758.15 66-31 768.05
4-64 810.61 29-37 794.11 50-69 806.96 68-5 801.23
5-40 837.18 29-62 806.96 51-21 804.53 70-82 802.10
5-41 862.89 31-70 770.49 51-23 760.76 74-8 826.94
6-42 823.64 32-24 763.02 52-44 768.92 74-33 843.44
7-72 809.91 32-76 848.65 52-71 757.29 75-33 832.32
8-47 847.60 32-80 824.16 53-24 820.68 76-8 777.95
9-46 847.08 33-74 752.60 53-46 798.97 76-33 842.74
10-45 825.72 34-48 812.35 53-75 766.84 76-53 816.17
12-28 810.09 36-1 845.87 54-45 835.45 78-35 828.85
13-2 823.98 40-30 789.77 54-78 841.53 78-53 769.79
14-1 854.38 41-51 846.91 55-48 765.62 78-55 759.89
19-4 843.26 43-7 802.79 55-79 862.37 81-8 767.19
19-50 856.46 44-82 864.97 57-1 832.84 81-33 845.00
21-51 861.33 45-54 803.49 58-29 774.83 81-52 826.07
24-53 786.64 46-53 745.82 60-1 836.84 82-22 763.89
24-82 797.93 48-8 812.00 61-1 746.69 82-42 838.40
26-9 825.72 48-55 768.75 61-27 782.30 82-74 811.30
26-10 781.78 49-10 749.82 61-49 815.12 82-80 766.67
28-56 839.27 49-34 865.49 63-29 776.22

Table 2-2. AV links and their paired links

Pair AV Pqired Pair AV Pgired Pair AV Pqired

link link link link link link
1 233 15 16 248 94 31 263 178
2 234 20 17 249 102 32 264 180
3 235 23 18 250 105 33 265 194
4 236 34 19 251 111 34 266 196
5 237 36 20 252 112 35 267 199
6 238 52 21 253 113 36 268 201
7 239 53 22 254 116 37 269 204
8 240 84 23 255 123 38 270 205
9 241 85 24 256 127 39 271 207
10 242 87 25 257 130 40 272 209
11 243 88 26 258 133 41 273 217
12 244 89 27 259 135 42 274 218
13 245 90 28 260 147 43 275 221
14 246 91 29 261 150 44 276 231
15 247 92 30 262 153
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2.4.2 Plan Comparison

In this section, we consider three different deployment plans to demonstrate how an
appropriate plan can benefit the system performance. The first plan is to do nothing, meaning
that no AV lanes will be deployed; the second plan is listed in Table 2-3; and the third plan is to
deploy all the AV lanes in Table 2-3 at the first year (see Table 2-4). The social costs associated
with these three plans are calculated to be $6.845 x 10%,$6.582 x 10'%, and $6.814 x 101,
respectively. As can be observed, although the number of AV lanes and their locations are
exactly the same for plan 2 and plan 3, the performance of plan 2 is much better than that of plan
3 in term of the social cost. Compared with plan 1 (to do nothing), the former reduces the social
cost by 3.84%, while the latter only leads to a reduction of 0.45%. It implies that considering the
time dimension into the deployment plan is of critical importance.

Table 2-3. Deployment plan 2

Pair 1 Number of AV Pair 1 Number of AV Pair . Number of AV
lanes deployed lanes deployed lanes deployed
2 21 1 13 10 1 22 11 1
3 10 1 13 11 1 22 12 1
4 11 1 14 12 1 23 25 2
4 12 3 15 9 1 26 22 1
5 11 3 15 11 1 27 35 1
5 12 1 16 13 1 29 13 2
5 17 1 17 10 1 30 13 1
8 10 1 17 11 1 37 35 3
8 11 1 18 10 1 37 36 1
10 35 1 18 11 1 37 37 1
10 36 1 19 10 1 39 35 3
11 10 1 20 15 1 39 36 2
11 11 1 21 12 1 42 1 2
12 11 2 21 13 1
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Table 2-4. Deployment plan 3

Pair 1 Number of AV Pair 1 Number of AV Pair 1 Number of AV
lanes deployed lanes deployed lanes deployed
2 1 1 14 1 1 23 1 2
3 1 1 15 1 2 26 1 1
4 1 4 16 1 1 27 1 1
5 1 5 17 1 2 29 1 2
8 1 2 18 1 2 30 1 1
10 1 2 19 1 1 37 1 5
1 1 2 20 1 1 39 1 5
12 1 2 21 1 2 42 1 2
13 1 2 22 1 2

We further examine the evolution of AV market penetration and the annual cost under the
three plans, as displayed in Figure 2-3 and Figure 2-4. It can be observed that the adoption rate
resulted from plan 3 grows the fastest, which is easy to understand since plan 3 provides all the
capacity for AVs at the very beginning of the modeling horizon. The annual costs for the first
four years under plan 3 are much higher than those under the other two plans. The reason behind
is when the level of market penetration of AVs is low, although deploying all the AV lanes can
help to enlarge the gain of this portion of vehicles, it will lead to tremendous increase in the
travel time of CVs. As a result, the total social welfare decreases. What’s worse, as shown in
Figure 2-4, such negative effect can last for several years as it takes time for CV drivers to adopt
AVs. On the contrary, although plan 2 does not promote the adoption rate as quickly as plan 3, it
does reduce the social cost by a larger amount via deploying AV lanes progressively. It is
worthwhile to highlight that, in plan 2, most of the AV lanes are deployed after the 10" year
when the AV market penetration is high enough, i.e., 26% (see Figure 2-3). When the market
penetration of AVs is low (e.g., at the first several years), only two AV lanes are deployed (see
Table 2-3).
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Figure 2-3. Evolution of AV market penetration under various plans
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Figure 2-4. Evolution of annual cost under various plans

2.4.3 Sensitivity Analysis
As many parameters have impact on the market penetration of AVs, sensitivity analysis is
conducted in this section. All the numerical experiments in this section are based on plan 2.
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Figure 2-5 shows the AV market penetration curves with variable capacity ratios between
AV lanes and regular lanes. Specifically, “3.0 times” means that the per-lane capacity becomes
tripled when it is converted from a regular lane to an AV lane. Interestingly, although the growth
rate increases as the capacity ratio increases, the differences among them are indistinctive in
Figure 2-5, which indicates that increasing the per-lane capacity of AV lanes will not
significantly promote the market penetration. It makes sense because the coverage area of AV
links is relatively small, thus increasing their capacities only leads to limited reduction in the
AVs’ trip times. Actually, the total social costs associated with “1.5 times”, “2.0 times”, “2.5
times”, and “3.0 times” are $6.693 x 101, $6.619 x 101, $6.582 x 10!, and $6.562 x 101,
respectively. The variance is very small.
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Figure 2-5. Evolution of AV market penetration with variable ratios of AV-lane capacity
over regular-lane capacity

Figure 2-6 specifies the evolution of AV market penetration with different unsafety
factors (i.e., ¢). As ¢ increases, the growth rate increases, and it takes fewer years to reach the
potential market size. The reason is straightforward: when the unsafety factor of using CVs
becomes larger, the incentive for people to adopt AVs will be higher.
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Figure 2-6. Evolution of AV market penetration with different unsafety factors
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Figure 2-7. Evolution of AV market penetration with different VOTs of AVs

Traveling with AVs, people can concentrate on dealing with other personal matters
instead of driving, thus their VOTSs (i.e., y,) are envisioned to be no greater than those traveling
with CVs (i.e., y;). To examine how y, affects the AV adoption rate, Figure 2-7 plots the
penetration curves with various y,. It can be observed that as y, increases, the growth rate
increases, and the time to reach the saturation point becomes shorter. For example, when y, =
0.2 ($/min), it only takes 12 years to reach the saturation point, which is only half of the time
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needed when y, = 0.5 ($/min). Accordingly, we may expect that the higher autonomous level of
AVs is, the higher adoption rate will be.

To enable full-autonomous driving, intelligent control systems and various types of
sensors (e.g., cameras, radar, and ultrasonic sensors) are required. Consequently, AVs are usually
more expensive to use than CVs, and the additional costs become a critical factor preventing
people from adopting AVs. Figure 2-8 describes how the evolution curve of AV market
penetration changes with changing additional annual cost. As expected, higher additional annual
costs will lead to lower growth rates. However, the saturation points do not vary much with
different additional annual costs. Specifically, it takes about 26 years to achieve the potential
market size for all scenarios.
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Figure 2-8. Evolution of AV market penetration with different additional annual costs for
using AVs

As the number of annual trips varies from person to person, Figure 2-9 illustrates its
impact on the AV market evolution. As can be seen, increasing the number of annual trips results
in increased adoption rate of AVs, as well as fewer years to reach the saturation point. This is
because more benefit can be derived when more trips are involved as per Eqg. (13).

To investigate the impact of the potential market size on the market penetration curve,
simulation experiments based on four potential market sizes: 65%, 75%, 85%, and 95% are
conducted. Figure 2-10 illustrates the associated evolution patterns of AV market penetration.
All patterns have similar growth rates in the earlier years (e.g., year 1 t010), while the growth
rates diverge in the later years, and higher potential market sizes lead to larger growth rates. It is
worthwhile to point out that the saturation points associated with different potential market sizes
do not vary much, which is in agreement with the finding of Lavasani et al. (2016)
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Figure 2-9. Evolution of AV market penetration with different numbers of annual trips
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Figure 2-10. Evolution of AV market penetration with different potential market sizes

2.4.4 Optimal Location Plan

In this section, we solve AVLL for the south Florida network. Instead of starting with
only one initial deployment plan, we start with different initial plans for the active-set algorithm,
and take the best optimal plan as the final solution. By doing so, some poor local solution can be
avoided. The final deployment plan obtained is given in Table 2-5, and the associated social cost
is $6.578 x 1011, Compared with plan 1 (to do nothing), the optimal plan reduces the social cost
by $2.674 x 101° or 3.91%. Figure 2-11 and Figure 2-12 illustrate the evolution of AV market
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penetration and annual cost under both the optimal plan and plan 1. As we can see, the optimal
plan does not lead to reduced annual cost until the 9" year, when the AV market penetration
reaches a relative high rate.

Table 2-5. Optimal deployment plan

Pair T Number of AV Pair 1 Number of AV Pair . Number of AV

lanes deployed lanes deployed lanes deployed
2 21 2 13 10 2 21 12 2
3 1 1 14 12 1 22 9 1
4 12 3 15 8 1 22 11 1
4 26 1 15 11 1 23 25 2
5 1 3 16 13 1 26 22 1
5 13 2 17 10 2 29 13 2
8 9 2 18 10 2 30 13 1
11 10 2 19 10 1 42 1 1
12 11 2 20 15 1 42 2 1
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Figure 2-11. Evolution of AV market penetration under plan 1 and the optimal plan
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Figure 2-12. Evolution of annual cost under plan 1 and the optimal plan

CHAPTER 3 OPTIMAL DESIGN OF AUTONOMOUS VEHICLE ZONES

IN TRANSPORTATION NETWORKS
In this chapter, Section 3.1 illustrates the operational concept of AV zones considered in
this chapter and basic assumptions for the proposed models. Section 3.2 formulates the mixed
routing equilibrium model and proposes its solution algorithm. Further, Section 3.3 optimizes the
design of AV zones.

For convenient, we redefine the notations, and below are the ones frequently used in this
chapter.

Set of regular nodes

Set of regular links

Set of AV nodes

Set of AV links

Set of dummy AV nodes

Set of dummy AV links

Set of origin-destination (O-D) pairs

Set of entrance-exit (E-E) pairs for the AV zone/network
Set of modes or classes, including CVs and AVs

pwm Set of paths between O-D pair w € W by mode m € M

3%3%3&2)%;2)&2%
7
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A(p) Set of links along path p € P between O-D pair w € W by mode m € M

Parameters

a Link a = (i,j) € A U 4 on the revised network
a Link @ = (i,j) € A on the AV network

w O-D pairw e W

w E-E pair w € W

m Mode m € M

davm Travel demand between O-D pair w € W by mode m € M
o(W) Entrance of E-E pair w € W
d(w)  Exit of E-E pair w € W

p Path p € P*'™ between O-D pair w € W by mode m € M

Variables

v, Traffic flow of linka € AU A

Vs Traffic flow of link @ € A

xy ™ Link flow on link a € A U A for O-D pair w € W by mode m € M
w Link flow on link @ € A for E-E pair w € W

t,(v,)  Travel time of link a € A specified by the link performance function
tz(vz)  Travel time of link @ € A specified by the link performance function
Ca Travel time of dummy AV link a € A

3.1 PROBLEM DESCRIPTION

We consider a network where both AVs and CVs are present. The origin-destination (O-
D) matrices of the vehicular trips of AVs and CVs are considered given. It is envisioned that a
government agency strategically designs AV zones on a road network. An AV zone is cordoned
off by a virtual loop. See Figure 3-1 for an example of where the nodes and links within loop C
comprise an AV zone. To facilitate the presentation of the model formulation, this chapter
hereinafter considers the deployment or presence of a single AV zone over the network, but the
proposed model can be easily extended to the case with multiple AV zones directly. Below we
illustrate the operational concept for the AV zone:

i. Only AVs are allowed to use the links within the zone;

ii. When entering the zone, AVs must report their exits of the zone to the control center, which
routes AVs to traverse the zone;

iii. Based on AVs’ entrances and exits, the control center routes AVs to minimize the total
travel time in the zone.

In the presence of an AV zone, when making their route choices, CVs need to avoid the
zone while AVs will decide whether to access the zone, and where to enter and exit. Note that
among all paths connecting the same O-D pair, some may traverse the AV zone while others will
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not. When comparing these paths, AVs need to perceive the times spent within and outside of the
AV zone.
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Figure 3-1. An example of AV zone

Since the overarching goal of this chapter is AV zone planning, a static deterministic

modeling framework is adopted. Below we summarize basic assumptions for our model
formulations:

Vi.

AVs using the same entrance and exit of the AV zone may experience different travel times
due to system-optimum routing. We assume that AVs perceive their travel times to be the
minimum travel times between their corresponding entrances and exits of the AV zone.

. All vehicles are assumed to minimize their own trip times.
I. The per-lane capacity of links within the AV zone is much larger than those of regular links

due to vehicle automation.

The capacity of a regular link with mixed traffic of CVs and AVs remains the same as
when only CVs use the link.

The performance functions of regular and AV links may be different, but all are increasing
functions with link flows.

In the network equilibrium model, there exists at least one usable path between each O-D
pair for both AVs and CVs. When designing the AV zone, if certain inner nodes within the
zone are origins or destinations, the corresponding demands of CVs will be discarded for
equilibrium analysis, because no feasible path will exist for CVs between these O-D pairs.
Subsequently, the resulting loss of social welfare will be calculated as part of the social
cost, which is the objective that government agencies aim at minimizing.

It is worth noting here that the equilibrium model developed in this chapter is different

from previous network equilibrium analyses of AV flows, e.g., Correia and van Arem (2016),
which focus on shared-use automated mobility and explicitly consider automated vehicle routing
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to meet the travel demands of households; all households act selfishly in choosing their paths and
schedules. In contrast, this chapter assumes that the vehicular O-D pattern of AVs is known and
focuses on modeling the mixed routing behaviors that arise with the existence of AV zones.

3.2 MIXED ROUTING EQUILIBRIUM MODEL

Let G(N, A) denote the network within the AV zone, where N and A are the sets of nodes
and links in the zone, respectively. For convenience, we hereinafter refer to them as AV network,
AV nodes, and AV links. Based on G (N, A), we construct a dummy AV network to replace the
original AV network. Specifically, such a dummy AV network only consists of those AV nodes
that are either entrances or exits of the AV zone (e.g., nodes 2, 3, 5, and 6 in Figure 3-1, and we
hereinafter refer to them as dummy AV nodes). Moreover, if an AV node is either an origin or a
destination, it will also be regarded as an entrance or an exit of the AV zone. Further, dummy
AV links are constructed to specify the connectivity between those nodes. For example, for the
AV zone in Figure 3-1, if node 4 is neither an origin nor a destination, then the dummy AV links
can be constructed as Figure 3-2(a); otherwise, Figure 3-2(b). By doing so, each dummy AV link
represents a set of paths connecting an entrance and an exit. For example, dummy AV link 2-3 in
Figure 3-2(a) represents paths 2 - 3,2 - 4 - 3,and 2 - 5 - 4 — 3 in Figure 3-1.
Consequently, the flow on dummy link 2-3 represents the demand between entrance 2 and exit 3.
In addition, as per Assumption i in Section 2, its travel time is equal to the shortest time of paths
2—-3,2->4-3and2 -5 - 4 - 3inFigure 3-1. In other words, a dummy AV link can be
viewed as the shortest path connecting the associated entrance and exit. Let G(N, A) denote the

dummy AV network where N and 4 are the sets of dummy AV nodes and links.

Let N and A denote the sets of non-AV or regular nodes and non-AV or regular links that
are nodes and links outside of the AV zone (e.g., nodes 1, 7, and links 1-3, 8-1 in Figure 3-1).
Let G(N U N, A u A) denote the network containing non-AV nodes, non-AV links, and dummy
AV nodes and links (we refer to G as a revised network). For example, if node 4 is neither an
origin nor a destination, then Figure 3-3 illustrates the revised network. In a revised network, we
only need to consider the user-optimum routing principle without worrying about the mixed
routing behaviors that exist in the original network.
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Figure 3-2. Dummy AV networks
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Figure 3-3. A revised network

We represent a link in the revised network as a € A U 4, or its starting and ending nodes,
i.e.,,a = (i,j) € AU A. Similarly, @ € A represents an AV link. Let W and W denote the sets of
O-D pairs for the revised network (note that these O-D pairs are the same as those in the original
network), and entrance-exit (E-E) pairs associated with the AV network. Further, we use o ()
and d (W) to denote the entrance and exit of E-E pair W € W. Let M be the set of transportation
modes CVs and AVs, i.e., M = {C, A}. Let d¥"™ and P¥'™ represent the travel demand and the
set of paths between O-D pair w € W by mode m € M, respectively. Let x2"™ be the flow on
link a € A U A for O-D pair w € W by mode m € M, and x2 be the flow on link @ € A for E-E
pair w € W. Let v, and v; be the aggregate flows of linksa € AU A and @ € A. Let t,(v,) and
t;(vs) define the travel times of links a € A and @ € 4 specified by the performance functions
of the links. Note that, according to Assumption iii, the per-lane capacity of each link within the
AV zone, i.e., @ € A, will be substantially improved. Let c, represent the travel time of dummy
AV link a € A.

3.2.1 Travel Time of Dummy Links
As previously mentioned, c, is assumed to be equal to the minimum trip time of the
corresponding E-E pair W € W. Specifically, with a given traffic flow distribution of the AV
network, vz, Va € A, finding the shortest path can be formulated as follows for each E-E pair
wew:
SP:
min Z ta(vg)zZ
z
aea
s.t. Az" = EV (3-1)
zZ¥ >0 via €A (3-2)

where A is the node-link incidence matrix associated with the AV network and E" is a vector with
a length of |N|. The vector consists of two-nonzero components: one has a value of 1 in the
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component corresponding to the entrance of W € W, and the other has a value of —1 in the
component corresponding to the exit of w € W,

In the above, the objective function is to minimize the total trip time. Constraint (3-1)
ensures flow balance, and constraint (3-2) makes sure that z are nonnegative variables. Since the
matrix associated with constraint (3-1) is totally unimodular, the optimal solution of SP must be
integers. Further, based on constraint (3-1) and the objective function, it is easy to verify that the
optimal value of z cannot be greater than 1. Therefore, the optimal solution z2*, vé € 4, is equal
to either 0 or 1. Specifically, zZ* = 1 if link d is utilized, and 0 otherwise. Therefore, we can
obtain the travel time of dummy AV link a € A as below:

Cq = Z By [Z td(vd)ng*

WEW aea
where S is a binary parameter that equals 1 if the dummy link a corresponds to the E-E pair i €
W, and 0 otherwise.

(3-3)

SP is a linear program written for each E-E pair v € W. Its optimality conditions are
stated as follows:

(3-1)-(3-2)
[ta(wa) — k] +1’)z8 = 0 vi=(@j)edwew (34
ta(va) — Kk + 1) =0 vi=(,j)edweW  (35)

where K are the multipliers associated with constraints (3-1).

3.2.2 User Equilibrium Flow Distribution in the Revised Network

As previously mentioned, in the revised network, we only need to consider the user-
optimum routing principle. With ¢, calculated as above for a € 4, the user equilibrium
conditions can be mathematically defined as follows:

AxWm = Ewmgwm VmeM,we W (3-6)
x4 >0 VaeAUAweW (3-7)
x>0 VaeAweW (3-8)
Xt =0 Va€eAwew (3-9)
Va = Z Z xg " VaeAUA (3-10)
WEW meM
taa) —p;"™ +p;"™ 20 Va=(i,j)) EAweW meM (3-11)
caa) —p* +p/" =0 va=(,j))edwew (3-12)
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(to(va) — o} " +p) ™ exg™=0 Va=(,j))eEAweW,meM (3-13)

(caa) —p"* +p"") - 2" =0 va=(,))edwew (3-14)

where A is the node-link incidence matrix associated with the revised network and E" is a vector
with a length of |N|. The vector consists of two-nonzero components: one has a value of 1 in the
component corresponding to the origin of w € W, and the other has a value of —1 in the
component corresponding to the destination of w € W. p are auxiliary variables representing the
node potentials.

In the above, constraint (3-6) ensures flow balance. Constraints (3-7) and (3-8) imply that
the link flow between each O-D pair by each mode should be nonnegative, and constraint (3-9)
ensures that only AVs can use dummy AV links. Constraint (3-10) implies that the aggregate
link flow is the summation of link flow between different O-D pairs by different modes.
Constraints (3-11)-(3-14) are complementary slackness conditions, ensuring that the perceived
travel times of utilized paths between an O-D pair for the same mode are the same, but less than
or equal to that of any unutilized usable path. Specifically, a path is usable for a mode if all the
links along the path are usable for the mode. For example, a path containing any AV link is not
usable for CVs.

3.2.3 System-Optimum Routing within the AV Network
As mentioned before, the demand for each E-E pair equals the flow of the corresponding
dummy AV link. Specifically, given the flow distribution of the revised network, the flow of a

dummy AV link, say d € 4, is calculated to be ¥, ey x;?'A. Therefore, the system-optimum flow
distribution within the AV zone can be formulated as follows:

Z Xow),j — ZxRO(W) Zﬁa Z viv e W (3-15)

J a€l WEW
Z X))~ Z eaw) = Z B Z Vv e W (3-16)
Jj acl wWEW
z xXij = Z Xje; = 0 vi e MN\o(W),d@)},weW (3-17)
k
g” 0 vieAwew (3-18)
Vg = Z x¥ va € A (3-19)
ta(U&) + Uat(’i(va) - ,51 + ,0] =0 va e A,W € W (3'20)
(ta(a) + vati(wa) —p¥ +p7) - x¥ =0 vaedwew (3-21)

where p are auxiliary variables, representing the node potentials.
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In the above, constraints (3-15)-(3-17) ensure flow balance. Constraint (3-18) suggests
that the link flow of each E-E pair is nonnegative. Constraint (3-19) implies that the AV link
flow is the summation of link flow for different E-E pairs. Constraints (3-20) and (3-21) are
complementary slackness conditions, specifying that marginal travel times of utilized paths
between an E-E pair are the same, but less than or equal to that of any unutilized path.

3.2.4 Mixed Routing Equilibrium

Definition 1. At the mixed routing equilibrium, for the same mode, perceived travel
times of utilized paths between an O-D pair are the same, but less than or equal to that of any
unutilized usable path between the same O-D pair.

In the above definition, perceived travel times for CVs are their actual trip times, while
the ones for AVs are the actual travel time spent outside of the AV zone, plus the perceived
travel times spent within the zone. Recall that the latter is equivalent to the minimum travel time
between AVs’ corresponding entrances and exits of the AV zone (see Assumption i).

Mathematically, we can define the mixed routing equilibrium conditions (MRE) for the
original network as (3-1)-(3-21). Specifically, (3-6)-(3-14) specify that, given the perceived
travel times within the AV zone, the flow distribution must satisfy the network equilibrium
conditions for the revised network; (3-1)-(3-5) ensure that AVs’ perceived travel times within the
AV zone equal the minimum travel times between their corresponding entrances and exits of the
zone; (3-15)-(3-21) imply that, within the AV zone, AVs must follow the system-optimum
routing principle.

To further formulate an equivalent mixed routing equilibrium model, we define a set A =
{(v,x,p, z, T)}, where the vector satisfies the following conditions:

(3-1), (3-2), (3-6)-(3-10), (3-18), (3-19)

57 >0 vie N,weWw (3-22)

™ >0 vi € N\d(W),w € W (3-23)
where T are auxiliary variables introduced to facilitate formulating the problem as follows.

Proposition 1. The mixed routing equilibrium conditions (3-1)-(3-21) are equivalent to
finding (v*, x*, p*, z*, T*) € A, which solves the following variational inequality:

MRE-VI:
ZaeA ta(v;)(va - U;) + ZaeA[ZWEVTI ﬁgv Z&EA ta(V:%)Zg/*](Va - U;) + ZW Zdeﬁ[td(v:”;) +
vati(vg) — (ﬁ;”* - ﬁ}”*)] (xg/ - xg’*) + ZW[(Zj x%v),j - kal‘g;(w)) -
Yaci BY Zwew xa | (Pawwy — Poin) — Lol (T o), — Ze Xnow)) —
Yacaba Xwew xy'A*](Tc‘;V(Vv) —T0m) + 2w Liempomamn (X xt; — Zexe:)(BF — b)) —
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Y Ziemtoma (X xl — Zexei ) (@ — 1) + o acataa) (28 — 277) 2
0,V(v,x,p,z,T) EA

The equivalence can be established by expressing the optimality conditions of MRE-VI
and comparing them with the defined mixed routing equilibrium conditions, i.e., MRE. See the
appendix for a proof.

Proposition 2. MRE-VI has at least one solution.

Proof: According to the appendix, we know that T are nonnegative auxiliary variables
that are only used to guarantee the flow balance within the AV network, i.e., (A.44), (A.47), and
(A.48); thus, adding some upper bounds to T will not affect the other optimal solutions
(v*,x*, p*, z"). Furthermore, since p represent node potentials, we can always find some upper
bounds for them, within which optimal values of these multipliers still exist. As a result, we can
construct a restricted MRE-VI by adding corresponding upper bounds to (p, 7). In addition, link
flows x and v are bounded, and the upper bound of z is 1, which has been demonstrated in
Section 3.1. Therefore, the restricted MRE-V1 problem has a compact and convex feasible
region. Given that all the functions are continuous, the restricted MRE-V1 admits at least one
solution (see, e.g., Harker and Pang, 1990), so as the original MRE-VI. []

However, even if all the link performance functions of both the regular and AV links are
strictly monotone, we cannot guarantee the uniqueness of the link flow solution to MRE-VI, as
the travel time functions of dummy links (see equality (3-3)) may not be strictly monotone with
respect to the link flows in the revised network.

To illustrate, we consider a simple AV network shown in Figure 3-4(a). The link travel
time functions are assumed to be: t;,(x12) = 3x12, t13(x13) = 3x;13, and t,3(x,3) = 3x53,
where x;,, x;13, and x,5 are the corresponding link flows. Suppose that 1-2, 1-3, and 2-3 are E-E
pairs, then the dummy network is constructed as the same as the original AV network (see Figure
3-4(b)). It is worth pointing out that dummy link 1-3 represents the shorter path of path 1 — 3
and path 1 - 2 — 3. Let e;,, e;3, and e,5 denote the dummy flows of link 1-2, 1-3, and 2-3, i.e.,
the demand of E-E pair 1-2, 1-3, and 2-3, respectively. Furthermore, we assume that e;3 > ey, +
e,3. It is easy to verify that under this assumption, both paths 1 — 3 and 1 - 2 — 3 of the AV
network will be utilized by the trips from E-E pair 1-3. Define the trips using path 1 - 2 —» 3 as
é13, then the ones using path 1 — 3 are e;3 — ;3. As a result, we have x;, = eq, + &3, x13 =
e13 — €13, and x,3 = e,3 + é;3. According to the system-optimum routing principle, the
marginal cost of path 1 - 3 and 1 — 2 — 3 must be equivalent. That is,

6(e13 — €13) = 6(eqp + é13) + 6(ez3 + é13)
Wthh yle|dS é13 = g(elg —_ 612 —_ 323).
Based on the flow distribution, we can obtain the travel time functions of the dummy
links: ¢, = t15(X12) = 2e15 + €13 — €33, €13 = t13(X13) = 2e13 + €15 + €p3, and ¢35 =

to3(x23) = 2e,3 + €13 — eq. Itis easy to verify that the Jacobian matrix of ¢ with respect to e is
only positive semi-definite, rather than positive definite. That is, the travel time functions of
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dummy links are not strictly monotone with respect to the link flows in the revised network.
Consequently, the link flow solution to MRE-VI may not be unique.

(a) AV network (b) Dummy AV network

Figure 3-4. A simple AV network and its corresponding dummy network

3.2.5 Solution Procedure
In this section, we solve MRE-VI by reformulating it to be the following nonlinear
optimization problem via a technique proposed by Aghassi et al. (2006):

MRE-NLP:

st (3-1), (3-2), (3-6)-(3-10), (3-18), (3-19), and (3-22)

ﬁa = ta(va) VaeA
Bo = Z By Z ta(va)zg Va e A
_ Wew aed B
" — @ - B, <0 Vae AUAweW
" - @ — By <0 VaeAwew
~Aa < ta(va) + vatz(va) — pY + py vieAweWw

Z"c%>.j - zx:‘fo(m - ) B z xg =0 Vvwew

j k acl WEW

w wo_ ~ ~

in.j - Zxk.z =0 vi € N\{o(W),d(W)},w € W
J) k
7ii =7 < ta(wa) vaieAwew

where &iW'A’ ONfL-W'C, Ba» Aa, and }72’NV are auxiliary variables, and d}"™ = d¥™, if i = o(w); d}"™ =
—dw™, if i = d(w); otherwise, d}"™ = 0.
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Specifically, if the optimal value of MRE-NLP is 0, then its solution (v*, x*, p*, z*, T%) is
also the one to MRE-VI.

3.2.6 Numerical Example

In this section, numerical examples are conducted based on the network in Figure 3-1.
Specifically, there are two O-D pairs with demands shown in Table 3-1, and the link
performance function is assumed to be t,(v,) = ay + by, X v, min, where a, and b, are
provided in Table 3-2. We construct an AV zone as per Figure 3-1. That is, nodes 2, 3, 4, 5, and
6 are AV nodes. Accordingly, links 2-3, 2-4, 2-5, 3-4, 3-6, 4-3, 4-5, 4-6, 5-4, and 5-6 are all AV
links. It is worthwhile to highlight that since node 4 is neither an origin nor a destination, the
dummy network and revised network are constructed as Figure 3-2(a) and Figure 3-3,
respectively. As per Assumption iii, we assume that the per-lane capacity becomes triple when a
regular link is converted to an AV link. Hence, the AV link performance function is t;(v;) =

b .
a, +?°>< vz mMin.

Table 3-1. O-D demand

O-D CV AV
1-7 40 30
8-7 25 15

Table 3-2. Network characteristics

Link a, (min) b, Link  ay (min) b, Link ay (min) b,

1-2 1.00 1.00 3-4 1.50 1.00 5-4 1.00 1.00
1-3 2.00 3.00 3-6 1.00 1.50 5-6 1.00 1.00
1-5 1.00 1.00 3-7 1.00 1.00 5-7 2.00 2.00
2-3 2.00 1.00 4-3 0.50 1.00 6-7 2.00 2.00
2-4 1.00 0.50 4-5 1.00 1.00 8-1 1.00 1.00
2-5 1.00 1.00 4-6 1.00 2.50 8-5 2.00 4.00

Given the above setting, we obtain the equilibrium solution by solving MRE-NLP.
Specifically, Table 3-3 and Table 3-4 display the equilibrium link flows for the original network
(see Figure 3-1) and the dummy network (see Figure 3-2(a)), respectively. As we can see, since
CVs are not permitted to use the AV links, the equilibrium link flows on the AV links and
dummy AV links are all 0. As mentioned previously, the demand for each E-E pair equals the
flow of the corresponding dummy AV link. Therefore, the equilibrium link flows in Table 3-4
are also the E-E demand for the AV zone. Given the E-E demand, we obtain a system-optimum
solution within the AV zone shown in Table 3-5 and Table 3-6. Comparing Table 3-3 with Table
3-5, it is easy to verify that the AV-link flows in Table 3-3 exactly follow the system-optimum
flow distribution, which is consistent with the operation concept iii that AVs are routed to
minimize the total travel time in the AV zone. Furthermore, making a comparison between Table
3-4 and Table 3-6, we can readily observe that the travel time of each dummy link in Table 3-4 is

40



- Infrastructure Adaptation Planning for Autonomous Vehicles

equal to the minimum path travel time (i.e., the path travel times that are bold and underlined) of
the corresponding E-E pair. For example, there are three paths 2 - 3,2 -4 - 3,and2 - 5 >
4 — 3 between E-E pair 2-3, whose travel times are 7.16, 6.91, and 7.41 min, respectively (see
Table 3-6). As expected, the travel time of dummy link 2-3 is 6.91 min (see Table 3-4), which
equals the minimum of the three, i.e., 6.91.

Table 3-3. Equilibrium link flow for the original network

Link CVflow AViflow 'raveltime i cvflow AVflow | 'aveltime
(min) (min)
12 000 3406 35.06 43 0.00 9.32 3.61
13 2396 0.0 73.87 45 0.00 0.00 1.00
15 2881 7.4 37.65 46 0.00 5.16 5.30
23 000 1548 7.16 5.4 0.00 0.65 1.22
o4 000  13.82 3.30 5-6 0.00  15.05 6.02
05 000 476 2.59 57 4104 000 84.09
34 000 0.00 1.50 6-7 0.00  22.09 46.18
36 0.00 1.88 1.94 81 1276 1191 25.67
37 2396 2291 47.87 85 1224 309 63.32

Table 3-4. Equilibrium link flow for the dummy network

Link AV flow  Travel time (min) Link AV flow  Travel time (min)

2-3 2291 6.91 3-6 0.00 1.94
2-5 0.32 2.59 5-3 0.00 4.82
2-6 10.83 8.60 5-6 11.25 6.02
3-5 0.00 2.50

Table 3-5. System-optimum link flow pattern within the AV zone

Link AV flow Travel time (min) Link AV flow Travel time (min)

2-3 15.48 7.16 4-3 9.32 3.61
2-4 13.82 3.30 4-5 0.00 1.00
2-5 4.76 2.59 4-6 5.16 5.30
3-4 0.00 1.50 5-4 0.65 1.22
3-6 1.88 1.94 5-6 15.05 6.02
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Table 3-6. System-optimum path flow pattern within the AV zone

Marginal path travel

E-E Path Path flow Path travel time (min) ) .
time (min)
2-3 2-3 13.60 7.16 12.32
2-4-3 9.32 6.91 12.32
2-5-4-3 0.00 741 12.32
2-5 2-5 0.32 2.59 4.17
2-3-4-5 0.00 9.66 14.82
2-4-5 0.00 4.30 6.61
2-6 2-3-4-6 0.00 13.96 23.42
2-3-4-5-6 0.00 15.67 25.85
2-3-6 1.88 9.10 15.20
2-4-3-6 0.00 8.85 15.20
2-4-5-6 0.00 10.32 17.64
2-4-6 451 8.60 15.20
2-5-4-3-6 0.00 9.35 15.20
2-5-4-6 0.65 9.10 15.20
2-5-6 3.79 8.60 15.20
3-5 3-4-5 0.00 2.50 2.50
3-6 3-4-5-6 0.00 8.52 13.53
3-4-6 0.00 6.80 11.10
3-6 0.00 1.94 2.88
5-3 5-4-3 0.00 4.82 8.15
5-6 5-4-3-6 0.00 6.77 11.03
5-4-6 0.00 6.52 11.03
5-6 11.25 6.02 11.03

Table 3-7 shows the perceived travel times of CVs and AVs with and without the AV
zone. As we can see, without the AV zone, both CVs and AVs perceive the same travel time for
the same O-D pair, as they share the same road network and link performance functions.
However, with the AV zone deployed, the perceived travel times of AVs between both O-D pairs
decrease substantially (e.g., by 19% between O-D pair 1-7), while the ones of CVs increase
considerably (e.g., by 10% between O-D pair 1-7). This is due to the fact that the AV zone can
be utilized only by AVs. Furthermore, as the per-lane capacity of links within the AV zone is
assumed to be much larger than those of regular links due to vehicle automation (see Assumption
iii), the total travel time with the AV zone is thus expected to be reduced. It can be seen from
Table 3-8 that with the presence of the AV zone, the system travel time decreases from
13,202.75 min to 12,987.27 min. Besides the total system travel time, AV-zone planners may
also want to analyze the impact of the AV zone on the AV-zone area (i.e., the area consisting of
links 2-3, 2-4, 2-5, 3-4, 3-6, 4-3, 4-5, 4-6, 5-4, and 5-6). Table 3-8 shows that the total travel time
within the AV-zone area decreases substantially, from 1,193.09 min to 324.69 min. The above
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findings imply that deploying an AV zone may improve the performance of the AV-zone area as
well as the whole system.

Table 3-7. Perceived travel times with and without the AV zone

Perceived travel Perceived travel

Scenario O-D time of CV (min) _ time of AV (min)
_ 1-7 110.88 110.88
Without AV zone
1-8 136.04 136.04
_ 1-7 121.74 89.84
With AV zone
1-8 147.40 115.51

Table 3-8. System and AV-zone area travel times with and without the AV zone

Travel time within the AV-zone

Scenario System travel time (min) .
area (min)
Without AV zone 13,202.75 1,193.09
With AV zone 12,987.27 324.69

3.2.7 Discussions

The mixed routing equilibrium model discussed above may become more relevant with
the deployment of various advanced traffic control and management strategies leveraging
connected and automated vehicle technologies. The modeling framework proposed in this
chapter can be applied to various scenarios where vehicles adopt different routing principles at
different sub-networks, as long as the routing strategies and the perceived travel times within the
sub-networks are well defined. Below is a detailed discussion:

e Routing strategy within the sub-network

As per the operation concept iii, the control center of the sub-network is assumed to route
vehicles to minimize the total travel time in the sub-network. In practice, the control center may
have different routing strategies for different sub-networks, such as minimizing vehicle-miles
traveled or traffic emissions. The proposed model can be readily extended to consider variant
routing strategies as long as the following conditions are satisfied:

I.  The routing objective function is convex with respect to link flows within the sub-
network.
ii.  All constraints are linear.

With the above conditions being met, the routing problem within the sub-network is a
convex problem and can be readily embedded into the mixed routing equilibrium model. More
specifically, let 1 denote the optimality conditions of the convex problem, and then the mixed
routing equilibrium conditions can be represented by {(1) — (14),y € ¥}, where y is the
optimization variable vector. Consequently, the proposed model can be applied to multiple sub-
networks with different routing strategies directly.
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e Perceived travel time within the sub-network

According to Assumption i, the perceived travel times are assumed to be the minimum
travel times between the corresponding entrances and exits of the sub-network, which implies an
optimistic routing behavior. Other considerations can be accommodated; for example, the
longest travel times (without loop) between the entrances and exits can be taken as the perceived
travel times within the sub-network, which implies a pessimistic routing behavior. However, any
consideration needs to ensure the perceived travel times to be uniquely defined. For example, the
average travel time between an entrance and an exit appears a good proxy for the perceived
travel time. Unfortunately, the value depends on the path flow distribution and may not be
uniquely determined under the system-optimum routing principle. Consequently, taking it as the
perceived travel time might lead to one driver having different perceived travel times even if the
link flow distribution is given. In this situation, there may be an infinite number of network
equilibrium flow patterns, which would impose a significant challenge for various planning
applications that rely on the typically unique equilibrium flow distribution as the sole estimate or
forecast of how traffic will react to changes in the transportation system. Additional care needs to
be exercised to handle such situations (see, e.g., Lou et al., 2010; Ban et al., 2013; de Andrade et
al., 2016).

3.3 OPTIMAL DESIGN OF AUTONOMOUS VEHICLE ZONE

Given the proposed mixed routing equilibrium model, we proceed to optimize the
deployment plan of an AV zone over a general network. As previously stated, the problem can
be formulated as a mixed-integer bi-level programming model. The lower-level problem is the
mixed routing equilibrium model developed above, i.e., MRE-VI. In the upper-level problem, the
decision variables specify where to set up the AV zone, i.e., which links are upgraded to be AV
links. All AV links should be clustered and cordoned off by a virtual loop. When a link becomes
an AV link, its per-lane capacity will be increased to a given value. The objective is to minimize
the social cost, which consists of the construction cost, the total system travel time, and the loss
of social welfare due to the loss of accessibility for some CV drivers. Mathematically, it is to
minimize Yaez5a + Yaea ta(Va)va + Xaeita(Wa)va + Dwew 0¥ d™C, where s; is the
construction cost for AV link d; o = 1, if the accessibility for O-D pair w is damaged by the
presence of the AV zone, and 0 otherwise; " is the loss of benefit for a CV driver between O-D
pair w due to the loss of accessibility.

3.3.1 Solution Procedure

Although the problem is NP-hard, a few heuristic algorithms can be applied to solve it
effectively, such as those in Zhang and Yang (2004), Sumalee (2004), and Hult (2006).
However, most of these existing heuristic algorithms may not generate new feasible design plans
efficiently, with a few exceptions (e.g., Sumalee, 2004), where complicated strategies have been
developed to ensure the feasibility of new design plans.

The simulated annealing algorithm or SAA is a probabilistic method proposed by
Kirkpatrick et al. (1983) and Cerny (1985) for finding the global optimum of a given function. Its
basic idea is to consider a neighboring solution of the current solution at each step, and apply a
probability function to decide whether to move to the new solution or not. It stops until a
maximum number of iterations is reached. This chapter applies SAA to solve the optimal design
model, as an efficient procedure of finding new feasible design plans can be encapsulated in it.
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Specifically, the AV zone starts from a random single node within the candidate area, and then,
as per SAA, is expanded by converting a neighboring non-AV node (i.e., the preceding or
succeeding non-AV nodes of AV nodes, see Figure 3-5) within the candidate area to an AV node
(we refer to the new AV zone as the “neighboring AV zone”) at each iteration. To verify whether
the neighboring AV zone is feasible, i.e., being surrounded by a closed cordon, the cutset-based
algorithm proposed by Zhang and Yang (2004) can be applied. Specifically, a cutset of a graph is
defined as *“a minimal collection of links whose removal reduces the rank of the graph by one
(and only one).” If the cut that separates the AV zone and non-AV zone is a cutset, then a new
feasible design plan is generated; otherwise, another neighboring AV zone will be considered.
Doing so leads to a better efficiency of finding new feasible plans, as the probability of a
neighboring AV zone being a closed cordon is very high.

Candiate area

D
non-AV links

B
AV links

O

non-AV nodes

o)

~ 7

AV nodes

O

neighbor nodes

Figure 3-5. A sample AV zone
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3.3.2 Numerical Example
In this section, numerical examples are conducted based on a network with 81 nodes and
288 links (see Figure 3-6). The dotted red line illustrates the candidate area where AV nodes can
4
only be located. The Bureau of Public Roads (BPR) function, t, = t2 (1 + 0.15 (Z—“) ) IS

a

adopted as the link performance function, where t2 and C, are free-flow travel time and capacity
of link a, respectively. Their values are randomly generated from intervals (5, 20) and (5, 100),
respectively. In particular, as per Assumption iii, we assume that the per-lane capacity triples
when a regular link is converted to an AV link. The O-D demand is displayed in Table 3-9.
Without losing generality, we assume that the construction cost for AV zones is 0.

The optimal AV-zone design is shown in Figure 3-6. Observed from the AV zone,
interestingly, it is unlike the best tolling cordons found by Zhang and Yang (2004) and Sumalee
(2004), which are rounded; instead, it has a relatively long and narrow shape. Such a design can
prevent CVs from detouring too much while providing privilege for AVs, as CVs can drive
across the AV zone via particular AV nodes (e.g., node 2 and 13; recall that CVs are forbidden to
use AV links instead of AV nodes). For example, path 55 ->30-13 14 >3 -52-59 >
24 - 23 - 22 - 21 - 42 - 71 is an available path for CVs from origin 55 to destination 71.
Therefore, the AV zone design appears reasonable, as, while reducing the travel cost of AVs, it
will not compromise the welfare of CVs too much, and may even improve it.

Table 3-10 shows the travel costs with and without the AV zone deployed. Specifically,
with the AV zone deployed, the system travel cost is reduced from 4,169,761 min to 3,278,468
min. That is, the AV zone has reduced the social cost by 21.4%. As mentioned previously, AV-
zone planners may be interested in the cost within the AV-zone area. As shown in Table 3-10,
the travel cost within the AV-zone area has been reduced by 57.5%. In addition, with the AV
zone deployed, the travel cost outside the AV-zone area decreases by 16.8%, although it is not as
significant as the one within the AV-zone area. For an additional illustration, Figure 3-7 plots the
travel cost saving distribution of CVs. The travel cost savings for all CV trips are positive, which
implies that no CV will suffer from the deployment of the AV zone. That is, such a designed AV
zone reduces the travel cost of AVs as well as that of CVs, which is in agreement with the
discussion in the previous paragraph.
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Figure 3-6. Network for the AV zone design

47



- Infrastructure Adaptation Planning for Autonomous Vehicles

Table 3-9. O-D demand

O-D Cv AV O-D Cv AV O-D Cv AV

55-71 20 24 58-73 20 24 72-59 30 36
55-72 30 36 58-74 30 36 73-55 20 24
55-73 40 48 58-75 30 36 73-56 30 36
55-74 20 24 59-71 20 24 73-57 40 48
55-75 20 24 59-72 30 36 73-58 20 24
56-71 30 36 59-73 40 48 73-59 20 24
56-72 20 24 59-74 20 24 74-55 30 36
56-73 20 24 59-75 20 24 74-56 20 24
56-74 30 36 71-55 20 24 74-57 20 24
56-75 30 36 71-56 30 36 74-58 30 36
57-71 20 24 71-57 40 48 74-59 30 36
S57-12 30 36 71-58 20 24 75-55 20 24
57-73 40 48 71-59 20 24 75-56 30 36
S7-74 20 24 72-55 30 36 75-57 40 48
57-75 20 24 72-56 20 24 75-58 20 24
58-71 30 36 72-57 20 24 75-59 20 24
58-72 20 24 72-58 30 36

Table 3-10. Travel costs with and without the AV zone

Scenario System travel cost Travel cost within the Travel cost outside of
(min) AV-zone area (min) the AV-zone area (min)
Without AV zone 4,169,761 471,755 3,698,005
With AV zone 3,278,468 200,688 3,077,780

48



- Infrastructure Adaptation Planning for Autonomous Vehicles

Number of trips

100

50 F

12 14 16 18 20 22 24 26
Travel cost saving (%)

Figure 3-7. Travel cost saving distribution of CVs

CHAPTER 4 CONCLUSION

Envisioning that AVs will be deployed in the future and government agencies can
dedicate certain lanes and areas as AV lanes and zones to further promote the adoption of AVs as
well as enhance the transportation network performance, this report first proposed a
mathematical procedure to optimally deploy AV lanes considering the endogenous AV market
penetration. Given AV lanes deployed in a general road network, the flow distributions of both
CVs and AVs were captured by a multi-class network equilibrium model. Further, a diffusion
model integrating the net benefit derived from deploying AV lanes was applied to forecast the
evolution of AV market penetration over time. Based on the network equilibrium model and the
diffusion model, a time-dependent deployment model was further formulated to optimize the
deployment plan of AV lanes. The deployment plan indicates when, where, and how many AV
lanes to be located. The optimization model formulated is a mathematical problem with
complementarity constraints, and an efficient active-set algorithm was applied to solve it.
Numerical examples were presented to validate the proposed deployment model, and to
demonstrate the importance of designing an appropriate deployment plan. Moreover, sensitivity
analyses for various critical parameters were conducted. Results show that (1) AV lanes should
be deployed following a progressive process instead of a radical one; (2) AV lanes should not be
widely deployed until the AV market penetration reaches a relative high level (e.g., more than
20%); (3) lower additional annual cost and VOT for AVs, higher unsafety factor for using CVs,
and higher number of annual trips have positive impact on promoting the AV adoption, while the
variance of the per-lane capacity of AV lanes has little impact.
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Also, this report developed a mathematical framework to optimally design AV zones. To
this end, an innovative mixed routing equilibrium model was firstly proposed to describe the
flow distribution of CVs and AVs with the presence of AV zones on a road network.
Specifically, different from the traditional mixed equilibrium model where each type of player
only obeys a particular routing principle across the whole network, AVs apply the user-optimum
routing principle when outside of the AV zones, but follow the system-optimum routing
principle within the AV zones. This results in a mixed routing behavior for AVs. To capture such
a phenomenon, a dummy network was constructed to replace the original AV network where
each dummy link represents a set of paths connecting an entrance and an exit of the AV zone;
accordingly, the travel cost of each dummy link is in fact the travel cost of the associated
entrance and exit pair. As a result, formulating the mixed routing equilibrium model across the
original network is equivalent to establishing a traditional network equilibrium model on the
revised network. With the established mixed routing equilibrium model, a mixed-integer bi-level
programming model was proposed to obtain the optimal design plan of AV zones. The SAA
heuristic algorithm was then adopted to solve the model efficiently. Numerical examples show
that the social cost may be reduced substantially by an optimal deployment of AV zones.
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APPENDIX: PROOF OF PROPOSITION 1

This appendix includes the proof of proposition 1. For convenience, we rewrite A =
{(v,x,p,z,7)} as follows:

AxW™m = Ewmgwm vmeM,weW (A.1)
= Y ) vaeAu (42)
WEW meM
va= ) Xg vaea (A.3)
wew R
x4 >0 Vae AUAwew (A4)
x>0 Va€AweW (A.5)
xC =0 VvaEAweW (A.6)
x{ =0 VvaeAwewWw (A7)
pl =0 VieN,weWw (A.8)
™ >0 Vi € N\d(W),w € W (A.9)
Az" = EW viv € W (A.10)
zy >0 vieAweWw (A.11)

The optimality conditions of MRE-V1 can be stated as follows:

(A.1)-(A.11)

ta(V) =V, =0 Va € A (A.12)

Z ﬂg/ Z tﬁ(vd)zg/ - Va = 0 Va E AA (A13)

WeW aea _

~Ya=0 va e A (A.14)

_pWwm o pwm o swm VYa e AUA, .

P P; Ya = $a meMweWw (A.15)

ta(va) + vatz(va) — Py +Pj +va—ug =0 va=(i,j),wew (Al6)

(2 xow); = Tk o) — Laeabd Zwew X3 = Oy =0 VW EW (A17)

—(Zj x5, = Sk Xkow)) + Taca By Zwewxa ™ — o =0 Vi EW (A.18)
vi

(Zjx% = Zexpy) —67 =0 € N\{o(®),d(@)}, (A.19)
wew

) . . vi

(Bl —Zexts) =6’ =0 € N\{o(®),d(®)}, (A20)
wew

ta(vg) — Kk}’ + 1 —ag =0 vaieAwew (A.21)

xAEWA — VaeEAUAweWw (A22)

X CEWC = 0 VaeEAwEW (A.23)

x¥u? =0 vieAwew (A.24)

prer =0 vie N,weWw (A.25)
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el =0 ;‘:%\d(w)' (A.26)
zZa¥ =0 vieAwew (A.27)
& >0 Va€ AUAweW (A28)
>0 VaEAwWEW (A.29)
uY >0 vaeAwew (A.30)
67 >0 viv e W (A.31)
po Vi € N\d(W),
¢i =0 & e (A.32)
a¥ >0 vieAdwew (A.33)

where p!™, v, Ya, Eu%, uZ, 0%, ¢¥, k. and a2 are the multipliers of constraints (A.1)-(A.4),
and (A.7)-(A.11); £2°C is the multiplier of constraints (A.5) and (A.6).

From (A.12), (A.15), and (A.22), we have:

[ta(wa) — o} + p}”‘A]x(‘f‘A =0,Va€eEAwWEW (A.34)
From (A.12), (A.15), and (A.28), we have:

ta(vg) — p* + p;V'A >0,VaeAweW (A.35)
From (A.12), (A.15), and (A.23), we have:

[ta(v) — !¢ + p;V'C]xZ"C =0,VaeAweW (A.36)
From (A.12), (A.15), and (A.29), we have:

ta(va) — ¢ + p}v'c >0,VaEAwWEW (A.37)
From (A.13), (A.15), and (A.22), we have:

[Swew BE SaeataWa)zd — pi" + p)*|xg" = 0,va € Awew (A.38)
From (A.13), (A.15), and (A.28), we have:

Ywew BY YaeataWa)zd —pi"' +p" 20, va€AwewW (A.39)
From (A.14), (A.16), and (A.24), we have:

[ta(a) + vath(va) — Y+ ﬁf’]xg’ =0va=(i,j) €A weW (A.40)
From (A.14), (A.16), and (A.30), we have:

ta(wa) + vati(a) — By +p) = 0va=(,j)) EAWeW (A.41)
From (A.17) and (A.31), we have:
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(X; x(‘?(w),,- — Yk xR o)) — Laci BY Twew o' = Oy = 0,VW € W (A42)
From (A.18) and (A.32), we have:

~(Zj x5, — Tk Xeow)) + LacaBE Zwew Xa = Sogmy = 0,VW €W (A43)
We know that (A.42) and (A.43) can hold only if 8%, = 0, ¢0z) = 0, YW € W and

(Z) x5, — ZiXow) = Laca B Twew Xa " =0,V € W (A.44)
From (A.19) and (A.31), we have:

(Zjxl — Zexly) = 67 = 0,vi € N\{o(W),d(#)},w € W (A.45)
From (A.20) and (A.32), we have:

(Zjxl — Zexly) = 67 = 0,vi € N\{o(W),d(W)},w € W (A.46)
Similarly, (A.45) and (A.46) can hold only if: 6" = 0,¢ = 0,ve N\{o(W),d (W)}, €

W and

Yixl— Yexp; = 0,vi € N\{o(W),d(W)}, W € W (A.47)
Further, summating (A.44) and (A.47), we can obtain:

%) X)) ~ Lk Xaw) = ~ Laeili Twew Xg" (A48)
From (A.21) and (A.27), we have:

[ta(va) — kY + KJ-VV]Z(V;V =0 (A.49)
From (A.21) and (A.33), we have:

ta(wa) — K + 1" =0 (A.50)

Obviously, (A.1)-(A.11), (A.34)-(A.41), (A.44), and (A.47)-(A.50) are equivalent to the
MRE conditions (3-1)-(3-21).

Note that the optimality condition of MRE-VI contains additional constraints, such as,
(A.8), (A.9), (A.25), and (A.26), but this will not affect the equivalence.
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